已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
中学数学吧-数学试题-数学教案-数学课件-数学论文-竞赛试题-中高考试题信息竞赛讲座13平面三角三角函数与反三角函数,是五种基本初等函数中的两种,在现代科学的很多领域中有着广泛的应用同时它也是高考、数学竞赛中的必考内容之一一、三角函数的性质及应用 三角函数的性质大体包括:定义域、值域、奇偶性、周期性、单调性、最值等这里以单调性为最难它们在平面几何、立体几何、解析几何、复数等分支中均有广泛的应用【例1】求函数y=2sin(-2x)的单调增区间。解:y=2sin(-2x)= 2sin(2x+)。由2k-2x+2k+,kZ,得k-xk-,kZ。即原函数的单调增区间为:k-,k-(kZ)。【例2】 若(0,),比较sin(cos),cos(sin),cos这三者之间的大小。解:在(0,)中,sinxxtgx,而0cosx1,sin(cos) cos。在(0,)中,y=cosx单调递减,cos cos(sin)。sin(cos) cos0,f()cos(sin)= cos 10,0 sin。=sin(ctg) ctg。作出函数y=ctgx在(0,)上的图象,可看出:。证明:01,0sin1-=,k=2,3,n。(coscos cos)2()()()()=()2,coscos cos。二、三角恒等变换众多的三角公式,构成了丰富多彩的三角学。要灵活地进行三角恒等变换,除熟练地掌握三角公式以及一般的代数变形技巧外,更重要的是抓住三角式的结构特征,从角和函数名入手,深入分析,灵活解题。【例1】(1)已知cos= -,sin(+)= ,且0,求sin的值。(2)已知sin(-)= ,求的值。提示:(1)sin=。(2)sin2=1-2 sin2(-)=;=。【说明】三角变换重在角的变换。【例2】求coscoscoscos的值。解法1:利用公式coscos2cos4cos2n=,得coscoscoscos= -,coscoscoscos=。又coscos=,cos=,coscoscoscos=。解法2:coscoscoscos= =。解法3:利用公式coscos(+)cos(-)= cos3,取=、。【例3】求cos420+cos440+cos480的值。解:由倍角公式得cos4=()2= (1+2cos2+cos22)= +cos2+cos4,cos420+cos440+cos480= 3+(cos40+ cos80+ cos160)+(cos80+ cos160+ cos320)= +(cos40+ cos80+ cos160)= +(2cos60 cos20- cos20)= 。【例4】若sin+cos=,cos+sin=,求sincos的值。解:令=-,则(1)(2)得tg=, cos(+)=,sincos=sinsin= - cos(+)+ cos(-) = -。【例5】已知f(x)=sin(x+)+cos(x-)是偶函数,0,求。解法一:由偶函数的定义,可得(cos+sin)sinx=0对任意xR成立。cos+sin=0,2 sin(+)=0,+=k,而0,=。解法二:由f(-)=f(),得=,然后验证f(x)是偶函数。【例7】方程sinx+cosx+a=0在(0,2)内有相异两根、,求实数a的取值范围,以及+的值。解:sinx+cosx+a=0,sin (x+)= -。令t= x+,则t(,),sint= -。作出函数y= sint,t(,)的图象:由图象可以看出:当-1 -1且-即-2a-或-a2时,sint= -有相异两根t1、t2,原方程有相异两根、,并且当-2a-时,t1+t2=(+)+(+)=,+=;当-a2时,t1+t2=(+)+(+)=3,+=。【例8】已知sinx+siny+sinz=cosx+cosy+cosz=0,求s=tg(x+y+z)+tgxtgytgz的值。解:由已知得,(1)2+(2)2得cos(x-y)= -,同理,cos(y-z)= -,cos(z-x)= -。x,y,z中任意两角的终边夹角为,不妨设x=y+2m,mZ,y=z+2n,nZ,x= z+2(m+n),x+y+z= 3z+2(m+2n+1),s=tg(x+y+z)+tgxtgytgz= tg3z+tg(z+)tg(z+)tgz= tg3z+tg(z+)tg(z-)tgz= tg3z+ tgz tg(+z)tg(-z)=0。【说明】如能熟练运用下列公式,可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年合肥市某国有企业2025年岗位外包招聘考试笔试模拟试题及答案解析
- 网络实践报告总结
- 2025年温州市国有资本投资运营有限公司招聘16人(第二批)考试笔试备考试题及答案解析
- 2025年迪庆月光城英迪格酒店招聘公益性岗位工作人员(1人)笔试考试参考题库及答案解析
- 广安市前锋区发展和改革局面向社会公开选聘前锋区区属国有粮食企业高层管理人员笔试考试备考题库及答案解析
- 2025年延安甘泉县事业单位定向招聘大学生退役士兵考试笔试参考题库附答案解析
- 《JBT8772.2-1998 精密加工中心检验条件第 2 部分:立式加工中心几何精度检验》(2026年)实施指南
- 国家移民管理局直属事业单位2026年公开招聘事业编制人员笔试考试备考试题及答案解析
- 2026天津医科大学朱宪彝纪念医院人事代理制招聘1人考试笔试备考题库及答案解析
- 2025年聊城幼儿师范学校第二批公开招聘工作人员(9人)考试笔试备考试题及答案解析
- 2026年广东省湛江市单招职业倾向性测试题库带答案解析
- 产后盆底功能康复护理研究
- 新媒体概论宫承波课件
- 中国心房颤动管理指南2025解读课件
- 校长职级制笔试题目及答案
- 【《基于物联网技术的温室大棚智能监控系统设计》12000字】
- 电力行业市场前景及投资研究报告:固态变压器AIDC供配电架构方案
- 2025年广西公需真题卷及答案
- DLT5210.1-2021电力建设施工质量验收规程第1部分-土建工程
- 大学生爱国教育十讲知到智慧树章节测试课后答案2024年秋中国海洋大学
- 行政案例分析-终结性考核-国开(SC)-参考资料
评论
0/150
提交评论