[精题分解]导数及导数在函数中的应用(同步类).doc_第1页
[精题分解]导数及导数在函数中的应用(同步类).doc_第2页
[精题分解]导数及导数在函数中的应用(同步类).doc_第3页
[精题分解]导数及导数在函数中的应用(同步类).doc_第4页
[精题分解]导数及导数在函数中的应用(同步类).doc_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

世纪金榜 圆您梦想 精题分解:导数及导数在函数中的应用(同步类)一、选择题1. (广东省实验09-10学年高二期末(理)2已知,则 的值为 ( C ) A1 B2 C3 D4 2. (广东河源2010年高二期末质检(文)4曲线在点处的切线的倾斜角为(B )A30 B45 C60 D1203. (广东省实验09-10学年高二期末(理)7已知,则的值为 ( C )A B- C D以上均不对4. (广东深圳高中09-10学年高二期末)7.(B)Asinx B. -sinx C. cosx D. -cosx5. (北京朝阳区09-10学年高二期末(文)8函数的导数是 ( D )A B C D6. (广东深圳高中09-10学年高二期末)8已知二次函数的导数为 对于任意实数x都有 则的最小值为(C)A3 B. 5/2 C. 2 D. 3/27. (广东深圳高中09-10学年高二期末)10.若,则 _10ln10-1_8. (广东河源2010年高二期末质检(文)10如果函数y=f(x)的图象如右图,那么导函数的图象可能是( A )9. (广东深圳09-10学年高中高二期末)5.在函数的图像上,其切线的倾斜角小于的点中,坐标为整数的点的个数是(D)A.3 B.2 C.1 D.010. (福建省三明市普通高中09-10学年高二段考(理)10. 函数的定义域为,其导函数内的图象如图所示,则函数在区间内极大值点的个数是 (A) A1 B2 C3 D4 11. (吉林省吉林市0910学年高二上期末质检(文)3设P为曲线C:上的点,且曲线C在点P处切线倾斜角的取值范围为,则点P横坐标的取值范围为( A )ABCD12. (吉林省吉林市0910学年高二上期末质检(文)6函数在定义域内可导,的图象如图所示,则导函数可能为 ( D )A.B.C.D.13. (福建省厦门理工学院附中0910学年高二12月月考(文)8设曲线在点处的切线与直线平行,则( A )A B C D14. (湖南省长郡中学0910学年高二期末(理)8. 已知函数在处的导数为3,则的解析式可能为 ( A ) A(x-1)3+3(x-1) B2(x-1)2 C2(x-1) Dx-115. (湖南省长郡中学0910学年高二期末(文)12设,函数的导函数是,若是偶函数,则曲线在原点处的切线方程为( A )。ABCD16. (湖南省长郡中学0910学年高二期末(文)14曲线在P0点处的切线平行直线,则P0点的坐标为( C )。A(1,0)B(2,8)C(1,0)或(1,4) D(2,8)或(1,4)17. (河南南召二高0910学年高二期末模拟)3设曲线在点处的切线斜率为3,则点的坐标为(C) A( B C D18. (河南南召二高0910学年高二期末模拟)9已知,则等于(D) A2 B0 C-2 D-419. (河南南召二高0910学年高二期末模拟)11定义在上的可导函数满足且则0的解集为(A) A(0,2) B C D二、填空题20. (广东河源2010年高二期末质检(文)11若函数在处取极值,则 321. (黑龙江佳木斯一中09-10学年高二期末)14已知,则等于 1 .22. (广东深圳高中09-10学年高二期末)12.若,且f(0)=4, 则不等式f(x)0的解集是 _23. (福建省三明市普通高中09-10学年高二段考(理)11. 一个物体的运动方程为,其中的单位是米,的单位是秒,那么物体在3秒末的瞬时速度是 5 米/秒24. (吉林省吉林市0910学年高二上期末质检(文)13.已知函数在R上有两个极值点,则实数的取值范围是 .三、解答题25. (广东河源2010年高二期末质检(文)17(本小题满分13分)设函数在及时取得极值(1)求a、b的值;(2)若对于任意的,都有成立,求c的取值范围解:(1),因为函数在及取得极值,则有,即-3分 解得,-5分(2)由()可知,当时,;当时,;当时,所以,当时,取得极大值,-8分又,则当时,的最大值为-10分因为对于任意的,有恒成立,所以,解得或,-12分因此的取值范围为-13分26. (广东深圳高中09-10学年高二期末)19.设函数(1)求f(x)的单调区间;(2)求f(x)的极大值和极小值;(3)若关于x的方程f(x)=a有三个不同的实数根,求实数a的取值范围.解答: 列表:递增区间: 递减区间:(2).当时, 当时,(3)在同一直角坐标系中作y=f(x)和y=a的图像得 27. (黑龙江佳木斯一中09-10学年高二期末)19(本题12分)求函数f(x)=x3-12x+6,x-3,3的单调区间,并求函数f(x)的最值.19f(x)=3x2-12=3(x-2)(x+2),2 令f(x)=0,得x=-2,x=2,4所以,函数f(x)在(-3,2)和(2,3)上是增函数,在(-2,2)上是减函数,.10函数f(x)最大值是22,最小值是-10.1228. (广东深圳深圳高中09-10学年高二期末(文)18、(本小题满分14分)设函数(1)求f(x)的单调区间;(2)求f(x)的极大值和极小值;(3)若关于x的方程f(x)=a有三个不同的实数根,求实数a的取值范围解: 列表:递增区间: 递减区间:(2).当时, 当时,(3)在同一直角坐标系中作y=f(x)和y=a的图像(如下图)得: 29. (北京朝阳区09-10学年高二期末(文)19. (本题满分12分)已知函数,且在处取得极值(1)求的值;(2)若当1,时,恒成立,求的取值范围;(3)对任意的,1, ,是否恒成立?如果成立,给出证明,如果不成立,请说明理由解:(1)因为, 所以2分 因为在处取得极值, 所以解得4分(2)因为所以,当变化时,的变化情况如下表:因此当时,有极大值6分又,1, 时,最大值为 7分或 8分(3)对任意的,1, ,恒成立由(2)可知,当x=2时,有极小值又,1, 时,的最小值为c10分,故结论成立12分30. (广东深圳深圳高中09-10学年高二期末(文)20、(本小题满分14分)已知函数处取得极值2。 (1)求函数的解析式; (2)实数m满足什么条件时,函数在区间上单调递增? (3)是否存在这样的实数m,同时满足:;当恒成立。若存在,请求出m的取值范围;若不存在,说明理由。20解:(1)已知函数 (2)由 (3)分两种情况讨论如下: 当恒成立,必须 当恒成立,必须故此时不存在这样的m值。综合得:满足条件的m的取值范围是31. (福建省三明市普通高中09-10学年高二段考(理)20. (本小题满分14分)已知函数,()当时,求在定义域上的单调递增区间; ()若在上的最小值为,求出的值;20.(本小题满分14分)解:()当时,其定义域为, 2分, 4分令,得,又,所以的单调递增区间是 6分(),(1)当时,恒成立,在上单调递增,由,得(舍去);8分(2)当时,恒成立,在上单调递减,由,得(舍去);10分(3)当时,令,得 11分当时,在上为减函数; 12分当时,在上为增函数 13分,由,得综上所述, 14分32. (吉林省吉林市0910学年高二上期末质检(文)17(本题满分11分)已知过函数f(x)=的图象上一点B(1,b)的切线的斜率为3(1)求a、b的值;(2)求A的取值范围,使不等式f(x)A1992对于x1,4恒成立;17解:(1)=依题意得k =3+2a =3, a =32分,把B(1,b)代入得b =a = 3,b = 14分(2)令=3x26x=0得x=0或x=26分f(0)=1,f(2)=3,f(1)=3,f(4)=17x1,4,3f(x)179分。要使f(x)A1987对于x1,4恒成立,则f(x)的最大值17A1992A200911分33. (吉林省吉林市0910学年高二上期末质检(文)19(本小题12分)设函数()求的最小值;()若对恒成立,求实数的取值范围解:(),当时,取最小值,即 4分()令,由得,(不合题意,舍去)。6分。当变化时,的变化情况如下表:在内有最大值。10分在内恒成立等价于在内恒成立,即等价于, 所以的取值范围为 12分34. (湖南省长郡中学0910学年高二期末(理)25(本题满分8分)已知函数在上为增函数,函数在上为减函数. (1)分别求出函数和的导函数;(2)求实数的值;(3)求证:当时, 解:(1)= 2分= 4分 (2)当x1时,=0,得m1.当x1时,=0时, 1+1,所以由(1)知:f(1+)f(1),即:ln(1+)+ 1,化简得:(1+x)ln(1+)1g(1+)g(1), 即:ln(1+)-(1+ )-1,化简得:xln(1+)0时,xln(1+)1(x+1)ln(1+). 8分35. (湖南省长郡中学0910学年高二期末(文)21. 已知函数,(1)求函数的单调区间;(2)当时,求函数的最大值与最小值。21解:(1) 由,得,函数单调递增;同理,或函数单调递减. (分) (2)由 36. (湖南省长郡中学0910学年高二期末(文)24设函数(为常数),且在上单调递减。 (1)求实数的取值范围; (2)当取得最大值时,关于的方程有3个不同的根,求实数的取值范围。 解:(1)依题意得: 在上单调递减 在恒成立 即:当时, 当时,在恒成立记 则 只须 综上,(分) (2)当时,方程有3个不同根等价有3个不同根 记 则令得或 令得在递增,在递减 要使有3个不同根 只须 11分得(分)37. (河南南召二高0910学年高二期末模拟)20(本小题满分15分) 设,已知和为的极值点。 (1)求和的值; (2)谈论的单调性; (3)设,试比较与的大小。20

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论