大滞后系统Smith预估器的控制仿真.doc_第1页
大滞后系统Smith预估器的控制仿真.doc_第2页
大滞后系统Smith预估器的控制仿真.doc_第3页
大滞后系统Smith预估器的控制仿真.doc_第4页
大滞后系统Smith预估器的控制仿真.doc_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

大滞后系统Smith预估器的控制仿真一、实验目的 学习借助MATLAB软件设计一个Smith预估器控制一个大滞后环节,并且了解Smith预估器参数对系统的影响。二、实验原理借助MATLAB软件我们可以轻易的模拟大滞后系统,对其进行控制仿真, Smith预估器的基本原理就是预先估计出过程在基本扰动下的动态特性,然后由预估器进行补偿,力图使被延迟了的被调量超前反映的调节器,使调节器提前动作,从而明显的减小超调量和加速调节过程。控制框图如下:KpGp(s)e-sGc(s) U(s) Y(s) + - -KsGs(s) + Y(s) + 其中KsGs(s) =KpGp(s)(1-e-s)KsGss=2.2200S+1(1-e-60s)三、实验内容: 对以下大滞后环节G(s)=2.2e-60S200S+1采取Smith预估器控制方案进行控制,其中K=2.2T=200=60。采用工程整定中的动态特性参数法,有一组公式如下:KcK=1.35(T)-1+0.72TiT=2.5T+0.5(T)21+0.6TTdT=0.37T1+0.2T由此得到一组参数为: Kc=2.36 Ti=134.7s Td=20.9s用MATLAB中的Simulink仿真工具箱仿真。 其中KT变化5%,其中K=2.31T=210=63时。其中KT变化-5%,其中K=2.09T=190=57时。其中KT变化10%,其中K=2.42T=220=66时。其中KT变化-10%,其中K=1.98T=180=54时。- 其中KT变化15%,其中K=2.53T=230=69时。其中KT变化-15%,其中K=1.87T=170=51时。四、实验总结:通过试验,发现Smith预估器的控制能力强,控制范围广,对大延迟系统有很强的控制能力,使被延迟了的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论