弹性力学基础-中英ppt课件_第1页
弹性力学基础-中英ppt课件_第2页
弹性力学基础-中英ppt课件_第3页
弹性力学基础-中英ppt课件_第4页
弹性力学基础-中英ppt课件_第5页
已阅读5页,还剩145页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Elastic plasticMechanicsofMaterialsMing anCHEN 陈明安 SchoolofMaterialsScienceandEngineeringCentralSouthUniversity Typicaltensilespecimen Typicaltensiletestmachine gauge length portionofsamplewith reducedcrosssection Chapt 1Introduction 1 1Elasticityandplasticity 弹性与塑性 1 STRESS STRAINTESTING 应力 应变曲线拉伸试验 gauge length 2 ELASTICDEFORMATIONandELASTICITY 弹性变形与弹性 Elasticmeansreversible Itisreversibleandtimeindependent Thedeformationvanishesinstantaneouslyassoonasforcesareremoved 3 PLASTICDEFORMATION METALS andPLASTICITY 塑性变形与塑性 Plasticmeanspermanent Plasticdeformation itisirreversibleorpermanent 2003Brooks Cole adivisionofThomsonLearning Inc ThomsonLearning isatrademarkusedhereinunderlicense ThetensiontestisthestandardtestfordetermineE theelasticorYoung smodulus TestthatloadacylindricalspecimenintorsionareusedtomeasuretheshearmodulusG KnowingEandG Poisson sratiomaybeobtainedfromtherelationshipwederivedintheprevioussection 杨氏 弹性 模量E MetalsAlloys GraphiteCeramicsSemicond Polymers Composites fibers E GPa BasedondatainTableB2 Callister6e Compositedatabasedonreinforcedepoxywith60vol ofalignedcarbon CFRE aramid AFRE orglass GFRE fibers YOUNG SMODULI COMPARISON Plastictensilestrainatfailure Anotherductilitymeasure Note ARand ELareoftencomparable Reason crystalslipdoesnotchangematerialvolume AR ELpossibleifinternalvoidsforminneck 4 Ductileandbrittlematerials 韧性与脆性材料 Energytobreakaunitvolumeofmaterial Approximatebytheareaunderthestress straincurve TOUGHNESS 韧性 Low carbon mild steelisdifferentfrommostothermetalsinthatthereisasuddensmalldropofloadattheyieldpointfollowedbyanextensionatconstantstress Thelowerloadisusuallyreferredtoastheyieldpointformildsteel Theactualpointofyieldisoftendifficulttoidentify Anumberoftechniquesareusedtolocate y Thetangentmethod orkneemethod locatestheyieldstrengthattheintersectionoftheelasticslopeandtheinitialportionoftheplasticregion notreliably Thepreferredmethodisthepercentageoffsetmethodwhereyieldstrengthisobtainedbydrawingalineparalleltotheinitialelasticregiondataat0 2 strain 0 002 offset Wherethislineintersectsthestress straincurvethenbecomesknownasthe0 2 yieldstrength 5 Determinationofyieldstrength屈服强度 Formostmetals loadingbeyondtheyieldpointcausesapermanentdeformation WhenamaterialisloadedtopointBandthenunloaded itreturnstoazerostressstatealongalineparalleltotheinitialelasticregionbutdirectlyfromB ThestrainremaininginthematerialatpointDisknownastheplasticdeformation OnreloadingfromDthereisadeparturefromlinearityatC slightlybelowB andthestress straincurvebecomesthesameastheoriginalstress straincurve atE Notethatthepointofdeparturefromlinearityonthereloadcurve C isslightlyhigherthanforthefirstloadingcurve 6 Unloadingandreloading 卸载与再加载 7 Idealizationsofstress straincurves应力 应变曲线简化 Idealrigid plastic Rigid plastic Mechanics branchofphysicsconcernedwithmotionandbodydeformationcreatedbymechanicaldisturbanceorforces AppliedMechanics scienceofapplyingtheprinciplesofmechanicstodesignandanalysisofmechanicalsystem AppliedMechanics RigidBodyMechanicsStaticsDynamics Kinematics Kinetics DeformableBodyMechanicsElasticityPlasticityViscoelasticity FluidMechanicsLiquidsGases 1 2Researchobjectsandcontents Manufacturingprocessesthatmakeuseofcoldworkingaswellashotworking Commonmetalworkingmethods 轧制 挤压 锻造 冲压 拉拔等 2003Brooks Cole adivisionofThomsonLearning Inc ThomsonLearning isatrademarkusedhereinunderlicense Anisotropicbehaviorinarolledaluminum lithiumsheetmaterialusedinaerospaceapplications Thesketchrelatesthepositionoftensilebarstothemechanicalpropertiesthatareobtained RectangularCoordinates ThesystemofparticlesintheFigureissaidtobeinequilibriumifeveryoneofitsconstitutiveparticlesisinequilibrium Consequently thefirstconditionforequilibrium thevectorsumofalltheforcesiszero wherernextendsfrompoint0toanarbitrarypointonthelineofactionofforceFn Ifthesurfaceandbodyforcesareinbalance thebodyisinstaticequilibrium Thesecondconditionforequilibrium thetotalmomentofalltheexternalforcesaboutanarbitrarypoint0mustbezero AnIsolatedSystemofParticlesShowingExternalandInternalForces Foranobjecttobeatrest iestaticeq netforceandnetmomentmustbezero Sinceforcesandmomentsarevectors withinherentdirectionality itisfrequentlyusefulfordecomposeintoindividualcomponents ShearStress 剪应力 Shearstressescanalsobegeneratedbyappliedshearloads ConsidertwoequalandoppositeshearforcesVactingonarectangularblockasshown 应力点的概念 不同点处应力不同 应力面的概念 同一点处不同截面上的应力不同 应力必须指明是哪点 哪个截面上的应力 Apositivecomponentofstressactsonapositivefaceinapositivecoordinatedirectionoronanegativefaceinanegativecoordinatedirection ComplementaryShearStress 剪应力互等 Considerarectangularblockofunitthicknessandsupposeshearstresses 1 actonBCandAD Theforces 1 ADand 1 BCformacoupleofmagnitude 1 AD ABandtheblockisnotinequilibrium TheremustbeanequalandoppositecoupleformedbyshearstressesonABandCD Thusanappliedshearstressisautomaticallyaccompaniedbyashearstressofequalintensityatrightangles andcausinganoppositeturningmoment totheoriginalshearstress Thesearecalledcomplementaryshearstresses Thestateofstressatapointcannormallybedeterminedbycomputingthestressesactingoncertainconvenientlyorientedplanespassingthroughthepointofinterest Stressesactingonanyotherplanescanthenbedeterminedbymeansofsimple standardizedanalyticalorgraphicalmethods Ifsowecanusethestresses actingontheseconvenientlyorientedplanespassingthroughthepoint forrepresentingthestressstateofthegivenpoint andthatthestressstateatthispointisknown Theselectionofdifferentcuttingplanesthroughagivenpointwould ingeneral resultinstressesdifferinginbothdirectionandmagnitude Acompletedescriptionofthemagnitudesanddirectionsofstressesonallpossibleplanesthroughthegivenpointconstitutesthestateofstressatthegivenpoint Problem Thestresscomponents onwhichofandhowmuchdifferentplanes canbeusedforrepresentingthestressstateofthegivenpoint 2 2 2Stateofstressatapoint 点的应力状态 一点可以用无穷个微元表示 找出之间应力的关系 称为应力状态分析 应力状态的概念 过一点不同截面上应力的的集合 称为这一点的应力状态 Stateofuniaxialstress 单向应力状态 Thestressnormaltothecross sectionalsurface Stressesonobliqueplanes 斜面上的应力 Stresses Forces Nowsupposewecuttheprismaticbaratanangle asshownbelow Howdothenormalandshearcomponentsofstressactingonaplaneatagivenpointchangeaswechangetheorientationoftheplaneatthepoint 2 GeneralStressSystemsin2 Dimensions 双向应力状态 ThestressesontheelementABCDinacomponentsubjectedtocombined2Dloading assumingnothroughthicknessstresses i e planestress areschematicallyshownintheFigure Thereferencesystemofcoordinateaxesareasshownalso Whatisthestressstateonachosenplaneofinterest ConsiderrotatingtheelementABCDbyanangle tothex axissothatitnowhasaxesofx andy orientatedatangle tothexandyaxes Todeterminethenewstresses x y and x y ontheelementintermsoftheoriginalstressesconsiderthefreebodydiagramofaprismaticelementADEandthestressesactingonitareasshownintheFigure Thenormalstress x andshearstress x y actontheplaneAEandmaintaintheequilibriumoftheprismaticelement Thestresses x and x y areobtainedbyresolutionofforcesintherespectivedirections TransformationofStresses 应力变换 x y xp yp Theseresultsclearlyillustratehowthevaluesforthenormalandshearstresscomponentsofaforcedistributedoveraplaneinsideofanobjectdependsuponhowyoulookatthepointinsidetheobjectinthesensethatthevaluesoftheshearandnormalstressesatapointwithinacontinuumdependupontheorientationoftheplaneyouhavechosentoview n Sxl Sym Szn xl2 ym2 zn2 2 xylm yzmn zxnl l cos n x m cos n y andn cos n z n2 S2 n2 Theabovementionedshowesthatifweknowthe9stressescomponentsonthethreemutuallyperpendicularplanesasfacesofacubeofinfinitesimalsize element whichsurroundthegivenpointwecandeterminethestersscomponentsactingonanyplanethroughthepoint Sothese9stressescomponentscanbeusedtorepresentthestressstateofapoint 一点应力状态可表示为 2 3Stresstensorandprincipalstresses 应力张量与主应力 2 3 1Stresstensor 应力张量 Tensoristhegeneralisedtermforavector Itsfullmathematicaldefinitionis Amathematicalentityspecifiablebyasetofcomponentswithrespecttoasystemofco ordinatesandsuchthatthetransformationthathastobeappliedtothecomponentstoobtaincomponentswithrespecttoanewsystemofco ordinatesisrelatedinacertainwaytothetransformationthathastobeappliedtothesystemofcoordinates Thecomponentsofavectorchangewhentheco ordinatesystemisrotated However thevectorstillhasthesamemagnitudeanddirectionasitdidbeforetheco ordinatesystemwasrotated Secondranktensors e g stress inertia seetheircomponentschangewhenaco ordinatesystemisrotatedandunlikevectorsthemagnitudeandorientationofthetensormayalsochange Theoremofconjugateshearingstresses Thereforeonly6independentstresscomponents Stresstensorissymmetric Couldyouwriteoutthestresstensorscorrespondingtothefollowingfigures Couldyoushowthestresstensorinacorrespondingelement 三向应力状态下的应力变换 2 3 2Principalstresses 主应力 Theactualvaluesofthe6stresscomponentsinthestressmatrixforagivenbodysubjectedtoloadingwilldependontheorientationofthecubeinthebodyitself Ifwerotatethecube itshouldbepossibletofindthedirectionsinwhichthenormalstresscomponentstakeonmaximumandminimumvalues Itisfoundthatinthesedirectionstheshearcomponentsonallfacesofthecubebecomezero Theprincipalstressesaredefinedasthosenormalcomponentsofstressthatactonplanesthathaveshearstresscomponentswithzeromagnitude 一点处一般有三个主平面 互相垂直 假设该斜微分面即为待求的主平面 面上 0 正应力 全应力S 全应力S在3个坐标轴上的投影为 以l m n为未知数的齐次线性方程组 其解就是应力主轴的方向 显然l m n 0是一组解 但l2 m2 n2 1 故应求其非0解 Stressinvariants 应力张量不变量 第一 第二 第三应力不变量 1 可以证明 在应力空间 主应力平面是存在的 2 三个主平面是相互正交的 3 三个主应力均为实根 不可能为虚根 4 应力特征方程的解是唯一的 5 对于给定的应力状态 应力不变量也具有唯一性 6 应力第一不变量I1反映变形体体积变形的剧烈程度 与塑性变形无关 I3也与塑性变形无关 I2与塑性变形有关 7 应力不变量不随坐标而改变 是点的确定性的判据 用主应力表示的各种应力状态的图示 2 3 3Principalshearstresses 主剪应力 剪应力取极值的平面上的剪应力 主剪应力 主剪应力所在的平面 主剪应力平面 主剪应力平面的法线方向 主剪应力方向 n Sxl Sym Szn xl2 ym2 zn2 2 xylm yzmn zxnl n2 S2 n2 S l2 m2 n2 1 现考虑主应力空间下主剪应力 主剪应力平面的求解 2 l2 12 m2 22 n2 32 1l2 2m2 3n2 2 将n2 1 l2 m2代入上式 取 2对l和m的偏导数并令其为零 可解出对应的l m n和极值剪应力 n 0 l 1 2 m 1 m 0 l 1 2 n 1 l 0 m 1 2 n 1 三组 6个 主剪应力平面分别与一个主应力平面垂直 与另两个主应力平面呈45 最大剪应力 maximunshearstress 2 3 4Decompositionofstresstensor 应力张量分解 Deviatoricstresscomponents 偏应力分量 i j x y zor1 2 3 Thesphericalorhydrostaticstresstensor 球应力张量 Thedeviatoricstresstensor 偏应力张量 1 分解的依据 静水压力实验证实 静水压力不会引起变形体形状的改变 只会引起体积改变 即对塑性条件无影响 2 为引起形状改变的偏应力张量 deviatoricstresstensor 为引起体积改变的球张量 sphericalstresstensor 静水压力 3 与应力张量类似 偏应力张量也存在相应的不变量 OneDimensionalStateofStresses ShearingStateofStresses 2 4TheMohrcircleofstress 应力莫尔圆 应力极值 哪个几何图形可代表该点的应力状态 画出球应力状态的Mohr圆 TheFigureillustratestheorientationofoneoftheeightoctahedralplaneswhichareassociatedwithagivenstressstate Eachoftheoctahedralp

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论