半导体物理与器件第三版(尼曼)05章答案_第1页
半导体物理与器件第三版(尼曼)05章答案_第2页
半导体物理与器件第三版(尼曼)05章答案_第3页
半导体物理与器件第三版(尼曼)05章答案_第4页
半导体物理与器件第三版(尼曼)05章答案_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Semiconductor Physics and Devices Basic Principles 3rd edition Chapter 5 Solutions Manual Problem Solutions 53 Chapter 5 Problem Solutions 5 1 a ncm O 10 163 and p n n x O i O 2 6 2 16 18 10 10 bg pxcm O 324 10 43 b Jen nO For GaAs doped at Ncm d 10 163 ncmVs 7500 2 Then Jx 16 107500 1010 1916 bgb g or JA cm 120 2 b i pcm O 10 163 nxcm O 324 10 43 ii For GaAs doped at Ncm a 10 163 p cmVs 310 2 Jep pO 16 10310 1010 1916 xbgb g JA cm 4 96 2 5 2 a VIRR 1001 R 100 b R L A L RA 10 100 10 3 3 b g 001 1 cm c eN nd or 00116 101350 19 xNdbg or Nxcm d 4 63 10 133 d ep pO 00116 10480 19 xpObg or pxcmNNN Oada 130 1010 14315 or Nxcm a 113 10 153 Note For the doping concentrations obtained the assumed mobility values are valid 5 3 a R L A L A and eN nd For Nxcm d 5 10 163 ncmVs 1100 2 Then R xx 01 16 101100 5 10100 10 19164 2 bgbgb g or Rx 1136 10 4 Then I V Rx 5 1136 10 4 ImA 044 b In this case Rx 1136 10 3 Then I V Rx 5 1136 10 3 ImA 4 4 c V L For a 5 010 50 Vcm And vd n 1100 50 or vxcm s d 55 10 4 For b V L Vcm 5 001 500 And vd 1100 500vxcm s d 55 10 5 Semiconductor Physics and Devices Basic Principles 3rd edition Chapter 5 Solutions Manual Problem Solutions 54 5 4 a GaAs R L A V I k L A 10 20 05 Now eN pa For Ncm a 10 173 p cmVs 210 2 Then 16 10210 10336 1917 1 xcmbgb g So LR Ax 500 336 85 10 8 bg or Lm 14 3 b Silicon For Ncm a 10 173 p cmVs 310 2 Then 16 10310 104 96 1917 1 xcmbgb g So LR Ax 500 4 96 85 10 8 bg or Lm 211 5 5 a V L Vcm 3 1 3 v v dnn d 10 3 4 or ncmVs 3333 2 b vd n 800 3 or vxcm s d 2 4 10 3 5 6 a Silicon For 1 kVcm vxcm s d 12 10 6 Then t d vx t d 10 12 10 4 6 txs t 833 10 11 For GaAs vxcm s d 7 5 10 6 Then t d vx t d 10 7 5 10 4 6 txs t 133 10 11 b Silicon For 50 kVcm vxcm s d 9 5 10 6 Then t d vx t d 10 9 5 10 4 6 txs t 105 10 11 GaAs vxcm s d 7 10 6 Then t d vx t d 10 7 10 4 6 txs t 143 10 11 5 7 For an intrinsic semiconductor iinp en bg a For NNcm da 10 143 np cmVscmVs 1350480 22 Then i xx 16 1015 101350480 1910 bgbg or i xcm 4 39 10 6 1 b For NNcm da 10 183 np cmVscmVs 300130 22 Then i xx 16 1015 10300130 1910 bgbg or i xcm 103 10 6 1 5 8 a GaAs epxp pOpO 516 10 19 bg From Figure 5 3 and using trial and error we find pxcmcmVs Op 13 10240 1732 Then Semiconductor Physics and Devices Basic Principles 3rd edition Chapter 5 Solutions Manual Problem Solutions 55 n n p x x O i O 2 6 2 17 18 10 13 10 bg or nxcm O 2 49 10 53 b Silicon 1 en nO or n ex O n 11 8 16 101350 19 bg or nxcm O 579 10 143 and p n n x x O i O 2 10 2 14 15 10 579 10 bg pxcm O 389 10 53 Note For the doping concentrations obtained in part b the assumed mobility values are valid 5 9 iinp en bg Then 1016 101000600 619 xnibg or nKxcm i 300391 10 93 Now nN N E kT iCV g2 F H G I K J exp or EkT N N n x g CV i F H G I K J L N M M O Q P P ln ln 2 19 2 9 2 00259 10 391 10 b g bg or EeV g 1122 Now nK i 219 2 50010 1122 00259 500 300 L N M O Q P b g af exp 515 10 26 x or nKxcm i 5002 27 10 133 Then i xx 16 102 27 101000600 1913 bgbg so i Kxcm500581 10 3 1 5 10 a i Silicon iinp en bg i xx 16 1015 101350480 1910 bgbg or i xcm 4 39 10 6 1 ii Ge i xx 16 102 4 1039001900 1913 bgbg or i xcm 2 23 10 2 1 iii GaAs i xx 16 1018 108500400 196 bgbg or i xcm 2 56 10 9 1 b R L A i R x xx 200 10 4 39 1085 10 4 68 bgbg Rx 536 10 9 ii R x xx 200 10 2 23 1085 10 4 28 bgbg Rx 106 10 6 iii R x xx 200 10 2 56 1085 10 4 98 bgbg Rx 9 19 10 12 5 11 a 5 1 eN nd Assume ncmVs 1350 2 Then N x d 1 16 101350 5 19 bg Nxcm d 9 26 10 143 b TKTC 20075 TKTC 400125 From Figure 5 2 TC Ncm d 7510 153 Semiconductor Physics and Devices Basic Principles 3rd edition Chapter 5 Solutions Manual Problem Solutions 56 ncmVs 2500 2 TC Ncm d 12510 153 ncmVs 700 2 Assuming nNxcm Od 9 26 10 143 over the temperature range For TK 200 1 16 102500 9 26 10 1914 xxbgbg 2 7 cm For TK 400 1 16 10700 9 26 10 1914 xxbgbg 9 64 cm 5 12 Computer plot 5 13 a 10Vcmvd n vd 1350 10 vxcm s d 135 10 4 so Tm vxx nd 1 2 1 2 108 9 11 10135 10 2312 2 bgbg or TxJxeV 897 1056 10 278 b 1 kVcm vxcm s d 1350 1000135 10 6 Then Txx 1 2 108 9 11 10135 10 314 2 bgbg or TxJxeV 897 1056 10 234 5 14 a nN N E kT iCV g2 F H G I K J exp 2 101 10 110 00259 1919 xxbgbgexp F H I K 7 18 10847 10 1993 xnxcm i For Ncmnncm diO 1010 143143 Then Jen nO 16 101000 10100 1914 xbgb g or JA cm 160 2 b A 5 increase is due to a 5 increase in electron concentration So nx NN n O dd i F H I K 105 10 22 14 2 2 We can write 105 105 105 10 1413 2 13 2 2 xxxni bg bg so nx i 226 525 10 F H I K F H G I K J 2 101 10 300 1919 3 xx TE kT g bgbgexp which yields 2 625 10 300 110 12 3 x T kT F H I K F H I K exp By trial and error we find TK 456 5 15 a enep nOpO and n n p O i O 2 Then en p ep ni O pO 2 To find the minimum conductivity d dp en p e O ni O p 0 1 2 2 which yields pn Oi n p F H G I K J 1 2 Answer to part b Substituting into the conductivity expression min en n en ni inp pinp 2 1 2 1 2 bg bg which simplifies to min 2eni np The intrinsic conductivity is defined as Semiconductor Physics and Devices Basic Principles 3rd edition Chapter 5 Solutions Manual Problem Solutions 57 iinpi i np enen bg The minimum conductivity can then be written as min 2 inp np 5 16 e ni 1 Now 1 1 1 50 1 5 5 50 010 2 2 1 2 1 2 F H G I K J F H G I K J exp exp E kT E kT g g or 010 1 2 1 2 12 exp F H G I K J L N M O Q P E kTkT g kT100259 kT200259 330 300 002849 F H I K 1 2 19 305 1 2 17 550 12 kTkT Then Eg19 30517 55010 ln or EeV g 1312 5 17 1111 123 1 2000 1 1500 1 500 000050000066700020 or 316 2 cmVs 5 18 n T T F H I K F H I K 1300 300 1300 300 3 23 2 a At TK 200 n 1300 1837 ncmVs 2388 2 b At TK 400 n 1300 065 ncmVs 844 2 5 19 1111 250 1 500 0006 12 Then 167 2 cmVs 5 20 Computer plot 5 21 Computer plot 5 22 JeD dn dx eD xn nnn F H G I K J 5 100 0010 14 01916 1025 5 100 0010 19 14 F H G I K J x xn bg Then 0190010 16 1025 5 100 19 14 x xn bg which yields nxcm0025 10 143 5 23 JeD dn dx eD n x nn F H G I K J 16 1025 1010 0010 19 1615 xbg or JA cm 036 2 For Acm 005 2 IAJ 005 036 ImA 18 Semiconductor Physics and Devices Basic Principles 3rd edition Chapter 5 Solutions Manual Problem Solutions 58 5 24 JeD dn dx eD n x nnn so F H G I K J 40016 10 106 10 04 10 19 1716 4 xD x x nbg or 40016Dn Then Dcms n 25 2 5 25 JeD dp dx p F H I K L NM O QP F H G I K J eD d dx x L eD L pp 101 10 16 16 16 1010 10 10 10 1916 4 x x bg b g or JA cm 16 2 constant at all three points 5 26 JxeD dp dx ppx 0 0 eD L x x p p 10 16 1010 10 5 10 15 1915 4 b g bg b g or JxA cm p 032 2 Now JxeD dn dx nnx 0 0 F H G I K J eD x L xx n n 5 10 16 1025 5 10 10 14 1914 3 bg bg or JxA cm n 02 2 Then JJxJx pn 00322 or JA cm 52 2 5 27 JeD dp dx eD d dp x ppp F H I K L NM O QP 10 22 5 15 exp Distance x is in m so 22 522 5 10 4 xcm Then JeD x x pp F H I K F H I K 10 1 22 5 1022 5 15 4 b g exp F H I K 16 1048 10 22 5 1022 5 1915 4 exp x x xbg b g or J x A cm p F H I K 341 22 5 2 exp 5 28 JeneD dn dx nnn or F H I K L NM O QP 4016 1096010 18 1916 expx x bg F H I K F H I K 16 1025 10 1 18 1018 1916 4 expx x x bg b g Then F H I K L NM O QP F H I K 401536 18 22 2 18 expexp xx Then F H I K F H I K 22 2 18 40 1536 18 exp exp x x F H I K 14 526 18 exp x 5 29 JJJ Tn drfp dif a JeD dp dx p difp and p x x L F H I K 10 15 exp where Lm 12 so JeD L x L p difp exp F H I K F H I K 10 1 15 b g or Semiconductor Physics and Devices Basic Principles 3rd edition Chapter 5 Solutions Manual Problem Solutions 59 J x x x p dif exp F H I K 16 1012 10 12 1012 1915 4 bg b g or J x L A cm p dif exp F H I K 16 2 b JJJ n drfTp dif or J x L n drf exp F H I K 4 816 c Jen n drfnO Then 16 101000 10 1916 x bgb g F H I K 4 816 exp x L which yields F H I K L NM O QP 31exp x L Vcm 5 30 a Jen xeD dn x dx nn Now ncmVs 8000 2 so that Dcms n 00259 8000207 2 Then 10016 108000 12 19 xn xbg 16 10207 19 x dn x dx bg which yields 100154 10331 10 1417 xn xx dn x dx Solution is of the form n xAB x d F H I K exp so that dn x dx B d x d F H I K exp Substituting into the differential equation we have 100154 10 14 F H I K L NM O QP expxAB x d bg F H I K 331 10 17 exp x d B x d bg This equation is valid for all x so 100154 10 14 xA or Ax 65 10 15 Also 154 10 14 expxB x d F H I K F H I K 331 10 0 17 exp x d B x d bg which yields dxcm 2 15 10 3 At x 0 en n 050 so that 5016 108000 12 19 xABbg which yields Bx 324 10 15 Then n xxx x d cm F H I K 65 10324 10 15153 exp b At xnxx 0 065 10324 10 1515 Or nxcm0326 10 153 At xm 50 nxx5065 10324 10 50 215 1515 F H I K exp or nxcm50618 10 153 c At xm 50 Jen drtn 50 16 108000 618 1012 1915 xx bgbg or JxA cm drf 5094 9 2 Then Jx dif 5010094 9 JxA cm dif 5051 2 Semiconductor Physics and Devices Basic Principles 3rd edition Chapter 5 Solutions Manual Problem Solutions 60 5 31 nn EE kT i FFi F H I K exp a EEaxb FFi b 04 0151004 3 ab g so that ax 2 5 10 2 Then EExx FFi 042 5 10 2 So nn xx kT i F H G I K J exp 042 5 10 2 b JeD dn dx nn F H G I K J F H G I K J eD n x kT xx kT ni 2 5 10042 5 10 22 exp Assume TK kTeV 30000259 and nxcm i 15 10 103 Then J xxx n 16 1025 15 102 5 10 00259 19102 bg bgbg F H G I K J exp 042 5 10 00259 2 xx or Jx xx n F H G I K J 579 10 042 5 10 00259 4 2 exp i At x 0 JxA cm n 2 95 10 32 ii At xm 5 JA cm n 237 2 5 32 a JeneD dn dx nnn F H I K 8016 101000 101 1916 x x L bgb g F H G I K J 16 10259 10 19 16 x L bg where Lxcm 10 1010 43 We find F H I K 801616 10 4144 3 x or 801614144 F H I K x L Solving for the electric field we find F H I K 3856 1 x L b For JA cm n 20 2 201614144 F H I K x L Then F H I K 2144 1 x L 5 33 a JeneD dn dx nn Let nNNxJ ddo exp 0 Then 0 ndondo NxD Nxexpexp or 0 Dn n Since DkT e n n So F H I K kT e b Vdx z 0 1 F H I Kz kT e dx 0 1 F H I K L NM O QP F H I K kT e 1 so that V kT e F H I K 5 34 From Example 5 5 x xx 00259 10 1010 00259 10 110 19 1619 3 3 b g bg b g bg Vdx dx x x zz 0 10 0 10 4 3 3 4 00259 10 110 b g bg Semiconductor Physics and Devices Basic Principles 3rd edition Chapter 5 Solutions Manual Problem Solutions 61 F H I K 00259 10 1 10 110 3 3 3 4 0 10 lnb gx 002591011 ln ln or VmV 2 73 5 35 From Equation 5 40 x d d kT eNx dNx dx F H I K F H G I K J 1 Now 100000259 1 F H G I K J Nx dNx dx d d or dNx dx xNx d d 386 100 4 Solution is of the form NxAx d exp and dNx dx Ax d exp Substituting into the differential equation AxxAx exp exp386 100 4 which yields 386 10 41 xcm At x 0 the actual value of Nd0 is arbitrary 5 36 a JJJ ndrfdif 0 JeD dn dx eD dNx dx difnn d F H I K eD L N x L n doexp We have D kT e cms nn F H I K 6000 002591554 2 Then J xx x x L dif F H I K 16 101554 5 10 01 10 1916 4 exp bgbg bg or Jx x L A cm dif F H I K 124 10 52 exp b 0 JJ drfdif Now Jen drfn F H I K L NM O QP 16 106000 5 10 1916 expxx x L bgbg F H I K 48 exp x L We have JJ drfdif so 48124 10 5 exp exp F H I K F H I K x L x x L which yields 2 58 10 3 xVcm 5 37 Computer Plot 5 38 a D kT e F H I K 925 00259 so Dcms 2396 2 b For Dcms 283 2 283 00259 1093 2 cmVs 5 39 We have Lcmm 1010 13 Wcmm 1010 24 dcmm

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论