



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
等比数列的概念与性质练习题1.已知等比数列的公比为正数,且=2,=1,则= A. B. C. D.2 2. 如果成等比数列,那么( ) A、 B、 C、 D、3、若数列的通项公式是 (A)15 (B)12 (C) D) 4.在等比数列an中,a28,a564,则公比q为() A2 B3 C4 D85.若等比数列an满足anan+1=16n,则公比为A2 B4 C8 D166.若互不相等的实数成等差数列,成等比数列,且,则 A4 B2 C2 D47.公比为等比数列的各项都是正数,且,则=( ) A. B. C. D.8.在等比数列中,则( ) A. B. C. 或 D. 或9.等比数列中,已知,则的值为( ) A16 B24 C48 D12810.实数依次成等比数列,其中=2,=8,则的值为( )A. 4 B.4 C. 4 D. 511.等比数列的各项均为正数,且18,则A12 B10 C8 D212. 设函数的最小值为,最大值为,则是( ) A.公差不为零的等差数列 B.公比不为的等比数列 C.常数列 D.既不是等差数列也不是等比数列13. 三个数成等比数列,且,则的取值范围是( ) A. B. C. D. 14.已知等差数列的公差,且成等比数列,则的值为 15.已知1, a1, a2, 4成等差数列,1, b1, b2, b3, 4成等比数列,则_16已知 ,把数列的各项排成三角形状: 记表示第行,第列的项,则=_.17.设二次方程有两个实根和,且满足(1)试用表示;(2)求证:是等比数列;(3)当时,求数列的通项公式 18.已知两个等比数列、满足,.(1)若,求数列的通项公式;(2)若数列唯一,求的值等比数列的概念与性质练习题参考答案1. B【解析】设公比为,由已知得,即,又因为等比数列的公比为正数, 所以,故,选B2.B 3.A 4. A 5。B6. D解析 由互不相等的实数成等差数列可设abd,cbd,由可得b2, 所以a2d,c2d,又成等比数列可得d6,所以a4,选D7.【解析】8.C 9.A 10.B 11.B12.【解析】选A.由已知得an=f(1)=n,bn=f(-1)=f(3)=n+4,cn=bn2-anbn=(n+4)2-n(n+4)=4n+16,显然cn是 公差为4的等差数列。13.【分析】应用等比数列的定义和基本不等式。选D。14. 15.;解析:1, a1, a2, 4成等差数列,;1, b1, b2, b3, 4成等比数列, 又,;16.前项共有个项,前项共用去项,为第行第个数,即时。17.(1)解析:,而,得, 即,得;(2)证明:由(1),得,所以是等比数列;(3)解析:当时,是以为首项,以为公比的等比数列, ,得18.【分析】 (1)设an的公比为q,则b11a2,b22aq2q,b33aq23q2.由b1,b2,b3成等比数列得(2q)22(3q2),即q24q20,解得q12,q22,所以an的通项公式为an(2)n1或an(2)n1.(2)设an的公比为q,则由(2aq)2(1a)(3aq2),得aq24aq3a10.(*)由a0得,4a24a0,故方程(*)有两个不同的实根,由an唯一,知方程(*)必有一根为0,代入(*)得a.19.数列为等差数列,为正整数,其前项和为,数列为等比数列,且,数列是公比
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025工业品买卖合同范本下载
- 2025技术开发委托合同模板
- 多学科诊疗实践探索
- 专师资培训课件
- 专家医生科普知识培训课件
- 2026届山东省济宁市田家炳中学七年级数学第一学期期末学业质量监测模拟试题含解析
- 2026届安徽省合肥市滨湖区寿春中学九年级数学第一学期期末质量检测模拟试题含解析
- 汽车行业从业者职业发展路径解析
- 山东省安丘市东埠中学2026届数学八年级第一学期期末质量跟踪监视试题含解析
- 2025合同模板股权众筹项目委托融资合同
- 塔吊租赁服务技术实施方案技术标
- 员工组织承诺的形成过程内部机制和外部影响基于社会交换理论的实证研究
- 优质课件:几代中国人的美好夙愿
- 2023年真空镀膜机行业市场分析报告及未来发展趋势
- 物业礼仪规范培训方案
- 约谈记录表模板
- 外科护理学阑尾炎教案
- 注塑成型技术培训之工艺理解课件
- 广西佑太药业有限责任公司医药中间体项目环评报告书
- 海绵城市公园改造施工组织设计
- 上体自编教材-体育运动概论-模拟
评论
0/150
提交评论