第九章重积分.doc_第1页
第九章重积分.doc_第2页
第九章重积分.doc_第3页
第九章重积分.doc_第4页
第九章重积分.doc_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第九章 重积分Chapter 9 Multiple Integrals9.1 二重积分的概念与性质 (The Concept of Double Integrals and Its Properties)一、二重积分的概念 (Double Integrals)定义 ( 二重积分的定义 ) 设 D 是平面的有界闭区域 ,是定义在 D 上的函数。将 D 任意分成 n 个小区域,它们的面 积用 表示。在每个上任取一点,并作和。假设存在一个确定的数满足:任给,存在,使得当各小区域的直径中的最大值小于时,就有不管区域D的分法如何,的取法如何。这样就称f在D上可积,I称为f在D上的二重积分,记作或Definition (The Double Integral) Let D be a bounded closed region in the 巧 1 plane and f a function defined on D. Partition D arbitrarily into subregions ,whose area is denoted by Choose arbitrarily a point in and then form the sum 。Supposethat there exists a fixed number I such that for any , there exists a such that if the length of the longest diameter of those subregions in a partition of D is less than , then,no matter how the partition is and how those points are chosen from Then is said to be integrable over Dand I is the double integral of over D ,written ,or 二、二重积分的性质 (Properties of Double Integrals)性质 1 两个函数和 ( 或差 ) 的二重积分等于它们二重积分的和 ( 或差 ), 即.Property 1 The double integral of the sum(or difference) of two functions is equal to the sum( or difference) of their double integrals, that is性质 2 被积函数前面的常数因子可以提到积分号前面 , 即,若k为常数。Property 2 The constant factor in the integrand function can be taken out of the double integral,that is ,if k is a constant.性质 3 二重积分关于积分区域具有可加性 , 即如果被 分成两个区域 和,的面积为 0, 则有.Property 3 The double integral is additive with respect to the integration region, that is, if is divided into two regions and and the area of is 0, then性质 4 若对任意,有,则有。Property 4 If for every ,then .性质5 若对任意, 有,则。Property 5 If for every ,then .性质 6 假设 M 和 m 分别是函数 f 在上的最大值和最小 值 , 则,其中是区域的面积。Property 6 Suppose that M and m are respectively the maximum and minimum values of function f on , then,where is the area of .性质 7( 二重积分的中值定理 ) 若在闭区域上连续 , 则在上至少存在一点使得,其中是区域的面积Property 7 (The Mean Value Theorem for Double Integral)If is continuous on the closed region , then there exists at least a point in such that , where is the area of .9.2 二重积分的计算法 (Evaluation of Double Integrals)一、直角坐标的二重积分 (Double Integrals in Rectangular Coordinates)定理 设 在xy平面上的有界闭区域 D 上连续 ,(1)若区域由和所给出,其中是上的连续函数,则。(2) 若区域由和所给出,其中是上的连续函数,则。Theorem Let be continuous on a bounded closed region in the -plane.(1) If is given by and , where are continuous functions of on, then(2) If is given by and , where are continuous functions of on , then二 极坐标下的二重积分 (Double Integrals in Polar Coordinates)如果积分区域由极坐标形式给出,则。If the region is given by in polar coordinates, then。9.3 三重积分 (Triple Integrals)一、三重积分的概念 (Triple Integrals)定义 设是定义在空间有界闭区域上的三元函数。如果存在一个确定的数, 满足 :任给, 存在, 对 的任 意一个分法 , 设小区域为,它们的体积用表示 , 在每个中任取一点,当小区域的最大直径小于时,不等式成立,则成为在D上的三重积分,记作,或.Definition Suppose that is a continuous function of three variables defined on a bounded closed region in space. If there is a number such that for any , there exists a such that, for any partition to with subregions , whose volume are denoted by and any pointschosen arbitrarily from respectively, the inequality holds true whenever the diameter of the largest subregion is less than, then A is said to be the triple integral of function over the region ,written,or 二、三重积分的计算 (Evaluation of Triple Integrals)1. 利用直角坐标 (Rectangular Coordinates) 计算三重积分 设是定义在空间有界闭区域上的连续的二元函数,由给出,则Suppose that is a continuous function of three variables defined on a bounded closed region in space given by.Then2. 利用柱面坐标 (Cylindrical Coordinates) 计算三重积分 当空间立体区域有一个对称轴时 , 计算上的三重积分通常使用柱坐标比较容易.When a solid region in three-space has an axis of symmetry, the evaluation of triple integrals overis often facilitated by using cylindrical coordinates.柱坐标和笛卡尔 ( 直角 ) 坐标之间的关系为.Cylindrical and Cartesian (rectangular) coordinates are related by the equations .设是一个型立体区域 , 它在平面的投影是型的。 如果在上连续 , 则.Let be a z-sample solid and suppose that its projection in the -plane is r-sample. If is continuous on , then.3. 利用球面坐标 (Spherical Coordinates) 计算三重积分 当空间立体区域关于某个点对称时,计算上的三重积分通常使用球坐标比较容易。When a solid regionin three-space is symmetric with respect to a point, the evaluation of triple integrals over is often facilitated by using spherical coordinates.球坐标和笛卡尔 ( 直角 ) 坐标之间的关系为:The equations relate sphericalcoordinates and Cartesian (rectangular) coordinates.球坐标中的体积元素由给出,因此有 The volume element in spherical coordinates is given by hence we have4. 重积分中的变量代换 (Change of Variables in Multiple Integrals)假设建立了旧变量与新变量的关系。定义一个函数,叫做雅可比行列式。这样 , 在适当的限制条件下 , 就有。Suppose that relate the old variablesandto new variables u and v. Define a function ,called the Jacobian,by 。Then,under suitable conditions on the functions and and with appropriate limits on the integral signs,对于三元情形 , 其中,则雅克比行列式由式子给出,同样在变换后的积分会出现因子。In the three-variable case, where ,the Jacobian is defined by Again, is the extra factor that appears in the transformed integral。9.4 重积分的应用 (Applications of Multiple Integrals)设曲面 S 由方程给出 ,D 为曲面 S 在平面上的投影区域 , 函数在 D 上具有一阶连续偏导数和。则 S 的表 面积为。Suppose the surface S is defined by the equation 。 D is the projection region of S in the-plane. Assume that has continuous first partial derivatives and on D. Then the furface area of S is g

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论