高一数学知识点梳理(1).doc_第1页
高一数学知识点梳理(1).doc_第2页
高一数学知识点梳理(1).doc_第3页
高一数学知识点梳理(1).doc_第4页
高一数学知识点梳理(1).doc_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

集合与简易逻辑一集合的有关概念1集合定义:某些指定的对象集在一起就成为一个集合,每个对象叫做集合的元素。表示方法列举法:将集合中的元素一一列举出来,用大括号括起来,如a,b,c描述法:将集合中的元素的共同属性表示出来,形式为:P=xP(x).如:图示法:用文氏图表示题中不同的集合。分类:有限集、无限集、空集。性质 确定性:必居其一,互异性:不写1,1,2,3而是1,2,3,集合中元素互不相同,无序性:1,2,3=3,2,12常用数集 复数集C 实数集R 整数集Z 自然数集N 正整数集(或N+) 有理数集Q3元素与集合的关系:4集合与集合的关系:子集:若对任意都有或对任意都有 则A是B的子集。 记作: 真子集:若,且存在,则A是B的真子集。 记作:B或“” AB,BC AC空集:不含任何元素的集合,用表示,对任何集合A有,若则A注:5子集的个数若,则A的子集个数、真子集的个数、非空真子集的个数分别为2n个,2n -1个和2n -2个。二集合的运算1有关概念交集: 并集:全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,通常用U表示。补集: 2常用运算性质及一些重要结论 三含有绝对值不等式1、绝对值的意义:(其几何意义是数轴的点A(a)离开原点的距离)2、含有绝对值不等式的解法:(解绝对值不等式的关键在于去掉绝对值的符号)(1)定义法;(2)零点分段法:通常适用于含有两个及两个以上的绝对值符号的不等式;(3)平方法:通常适用于两端均为非负实数时(比如);(4)图象法或数形结合法;(如讨论的解有个数)(5)不等式同解变形原理:即 3、不等式的解集都要用集合形式表示,不要使用不等式的形式。四一元二次不等式1、二次函数、一元二次方程、一元二次不等式的联系。(见课本P20)2、利用二次函数图象的直观性来研究一元二次方程根的性质和一元二次不等式解集及变化,以及含字母的有关问题的讨论,渗透数形结合思想。(见P2122)3、解一元二次不等式的步骤:(1)将不等式化为标准形式或(2)解方程(3)据二次函数的图象写出二次不等式的解集。4、简单分式不等式的解法 5、简单的高次不等式的解法:用数轴标根法解。五、逻辑联结词与四种命题(一)逻辑联结词四种命题1命题:可以判断真假的语句叫做命题2逻辑联结词:“或()”、“且()”、“非()”这些词叫做逻辑联结词。或:两个简单命题至少一个成立 且:两个简单命题都成立, 非:对一个命题的否定3简单命题与复合命题:不含逻辑联结词的命题叫做简单命题;由简单命题与逻辑联结词构成的命题叫做复合命题。4表示形式:用小写的拉丁字母p、q、r、s来表示简单的命题,复合命题的构成形式有三类:“p或q”、“p且q”、“非p”5真值表:表示命题真假的表叫真值表;复合命题的真假可通过下面的真值表来加以判定。pq非pP或qP且q真真假真真真假假真假假真真真假假假真假假(二)四种命题1一般地,用p和q分别表示原命题的条件和结论,用p和q分别表示p和q的否定。于是四种命题的形式为:互逆原命题若p则q逆命题若q则p否命题若则逆否命题若则互 为为互 否逆逆 否互否互否互 逆原命题:若p则q()逆命题:若q则p否命题:若p则q逆否命题:若q则p2四种命题的关系:3一个命题的真假与其它三个命题的真假有如下四条关系:(1)原命题为真,它的逆命题不一定为真。(2)原命题为真,它的否命题不一定为真。(3)原命题为真,它的逆否命题一定为真。(4)逆命题为真,否命题一定为真。(三)几点说明1逻辑联结词“或”的理解是难点,“或”有三层含义:以“P或q”为例:一是p成立但q不成立,二是p不成立但q成立,三是p成立且q成立,2对命题的否定只是否定命题的结论,而否命题既否定题设又否定结论3真值表 P或q:“一真为真”, P且q:“一假为假”4互为逆否命题的两个命题等价,为命题真假判定提供一个策略。5反证法运用的两个难点:1)何时使用反证法 2)如何得到矛盾。六、充要条件(一)充分条件、必要条件和充要条件1充分条件:如果A成立那么B成立,则条件A是B成立的充分条件。2必要条件:如果A成立那么B成立,这时B是A的必然结果,则条件B是A成立的必要条件。3充要条件:如果A既是B成立的充分条件,又是B成立的必要条件,则A是B成立的充要条件;同时B也是A成立的充要条件。(二)充要条件的判断1若成立则A是B成立的充分条件,B是A成立的必要条件。2若且BA,则A是B成立的充分且不必要条件,B是A成立必要且非充分条件。3若成立则A、B互为充要条件。证明A是B的充要条件,分两步:(1)充分性:把A当作已知条件,结合命题的前提条件推出B;(2)必要性:把B当作已知条件,结合命题的前提条件推出A。(三)给定两个命题,p、q, 可以考虑集合A=xx满足p,B=xx满足q,则有若AB,则p 是q的充分条件。若AB,则p 是q的必要条件。3若A=B,则p 是q的充要条件。 记住:小范围能推出大范围,大范围不能推出小范围。函数一、函数的概念与表示 1、映射(1)映射:设A、B是两个集合,如果按照某种映射法则f,对于集合A中的任一个元素,在集合B中都有唯一的元素和它对应,则这样的对应(包括集合A、B以及A到B的对应法则f)叫做集合A到集合B的映射,记作f:AB。(2)象与原象:如果给定一个从集合A到集合B的映射,那么集合A中的元素a对应的B中的元素b叫做a的象,a叫做b的原象。注意点:(1)对映射定义的理解。(2)判断一个对应是映射的方法。2、函数(1)函数的定义原始定义:设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与它对应,那么就称y是x的函数,x叫作自变量。 近代定义:设A、B都是非空的数的集合,f:xy是从A到B的一个对应法则,那么从A到B的映射f:AB就叫做函数,记作y=f(x),其中,原象集合A叫做函数的定义域,象集合C叫做函数的值域。(2)构成函数概念的三要素 定义域对应法则值域3、函数的表示方法解析法列表法图象法注意:强调分段函数与复合函数的表示形式。二、函数的解析式与定义域1、函数解析式:函数的解析式就是用数学运算符号和括号把数和表示数的字母连结而成的式子叫解析式,解析式亦称“解析表达式”或“表达式”,简称“式”。(注意分段函数)求函数解析式的方法:定义法 (2)变量代换法 (3)待定系数法 (4)函数方程法 (5)参数法 (6)实际问题2、函数的定义域:要使函数有意义的自变量x的取值的集合。求函数定义域的主要依据:(1)分式的分母不为零;(2)偶次方根的被开方数不小于零,零取零次方没有意义;(3)对数函数的真数必须大于零;(4)指数函数和对数函数的底数必须大于零且不等于1;如果函数是由一些基本函数通过四则运算而得到的,那么它的定义域是由各基本函数定义域的交集。3。复合函数定义域:已知f(x)的定义域为,其复合函数的定义域应由不等式解出。三、函数的值域1函数的值域的定义在函数y=f(x)中,与自变量x的值对应的y的值叫做函数值,函数值的集合叫做函数的值域。2确定函数的值域的原则当函数y=f(x)用表格给出时,函数的值域是指表格中实数y的集合;当函数y=f(x)用图象给出时,函数的值域是指图象在y轴上的投影所覆盖的实数y的集合;当函数y=f(x)用解析式给出时,函数的值域由函数的定义域及其对应法则唯一确定;当函数y=f(x)由实际问题给出时,函数的值域由问题的实际意义确定。3求函数值域的方法直接法:从自变量x的范围出发,推出y=f(x)的取值范围;二次函数法:利用换元法将函数转化为二次函数求值域;反函数法:将求函数的值域转化为求它的反函数的值域;判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;单调性法:利用函数的单调性求值域;不等式法:利用不等式的性质求值域;图象法:当一个函数图象可作时,通过图象可求其值域;几何意义法:由数形结合,转化距离等求值域。四函数的奇偶性1定义:设y=f(x),xA,如果对于任意A,都有,则称y=f(x)为偶函数。设y=f(x),xA,如果对于任意A,都有,则称y=f(x)为奇函数。如果函数是奇函数或偶函数,则称函数y=具有奇偶性。2.性质:函数具有奇偶性的必要条件是其定义域关于原点对称,y=f(x)是偶函数y=f(x)的图象关于轴对称, y=f(x)是奇函数y=f(x)的图象关于原点对称,偶函数在定义域内关于原点对称的两个区间上单调性相反,奇函数在定义域内关于原点对称的两个区间上单调性相同,偶函数无反函数,奇函数的反函数还是奇函数,若函数f(x)的定义域关于原点对称,则它可表示为一个奇函数与一个偶函数之和奇奇=奇 偶偶=偶 奇奇=偶 偶偶=偶 奇偶=奇两函数的定义域D1 ,D2,D1D2要关于原点对称对于F(x)=fg(x):若g(x)是偶函数,则F(x)是偶函数若g(x)是奇函数且f(x)是奇函数,则F(x)是奇函数若g(x)是奇函数且f(x)是偶函数,则F(x)是偶函数3奇偶性的判断看定义域是否关于原点对称看f(x)与f(-x)的关系五、函数的单调性1、函数单调性的定义;2、判断函数单调性(求单调区间)的方法:(1)从定义入手,(2)从图象入手,(3)从函数运算入手,(4)从熟悉的函数入手(5)从复合函数的单调性规律入手注:函数的定义域优先3、函数单调性的证明:定义法“取值作差变形定号结论”。4、一般规律(1)若f(x),g(x)均为增函数,则f(x)+g(x)仍为增函数;(2)若f(x)为增函数,则-f(x)为减函数;(3)互为反函数的两个函数有相同的单调性;(4)设是定义在M上的函数,若f(x)与g(x)的单调性相反,则在M上是减函数;若f(x)与g(x)的单调性相同,则在M上是增函数。六、反函数反函数的概念:设函数y=f(x)的定义域为A,值域为C,由y=f(x)求出,若对于C中的每一个值y,在A中都有唯一的一个值和它对应,那么叫以y为自变量的函数,这个函数叫函数y=f(x)的反函数,记作,通常情况下,一般用x表示自变量,所以记作。注:在理解反函数的概念时应注意下列问题。(1)只有从定义域到值域上一一映射所确定的函数才有反函数;(2)反函数的定义域和值域分别为原函数的值域和定义域;2、求反函数的步骤(1)解关于x的方程y=f(x),达到以y表示x的目的;(2)把第一步得到的式子中的x换成y,y换成x;(3)求出并说明反函数的定义域(即函数y=f(x)的值域)。3、关于反函数的性质(1)y=f(x)和y=f-1(x)的图象关于直线y=x对称;(2)y=f(x)和y=f-1(x)具有相同的单调性;(3)y=f(x)和x=f-1(y)互为反函数,但对同一坐标系下它们的图象相同;(4)已知y=f(x),求f-1(a),可利用f(x)=a,从中求出x,即是f-1(a);(5)f-1f(x)=x;(6)若点P(a,b)在y=f(x)的图象上,又在y=f-1(x)的图象上,则P(b,a)在y=f(x)的图象上;(7)证明y=f(x)的图象关于直线y=x对称,只需证得y=f(x)反函数和y=f(x)相同;七二次函数1二次函数的解析式的三种形式(1)一般式:f(x)=ax2+bx+c(a0),其中a是开口方向与大小,c是Y轴上的截距,而是对称轴。(2)顶点式(配方式):f(x)=a(x-h)2+k其中(h,k)是抛物线的顶点坐标。(3)两根式(因式分解):f(x)=a(x-x1)(x-x2),其中x1,x2是抛物线与x轴两交点的坐标。求一个二次函数的解析式需三个独立条件,如:已知抛物线过三点,已知对称轴和两点,已知顶点和对称轴。又如,已知f(x)=ax2+bx+c(a0),方程f(x)-x=0的两根为,则可设f(x)-x=或。2二次函数f(x)=ax2+bx+c(a0)的图象是一条抛物线,对称轴,顶点坐标(1)a0时,抛物线开口向上,函数在上单调递减,在上单调递增,时,(2)a0)=b2-4acax2+bx+c=0 (a0)ax2+bx+c0 (a0)ax2+bx+c0)图象与解0=00,a0,M0,N0(4)对数换底公式:(5)对数的降幂公式:九指数函数与对数函数指数函数y=ax与对数函数y=logax (a0 , a1)互为反函数,从概念、图象、性质去理解它们的区别和联系名称指数函数对数函数一般形式Y=ax (a0且a1)y=logax (a0 , a1)定义域(-,+ )(0,+ )值域(0,+ )(-,+ )过定点(,1)(1,)图象指数函数y=ax与对数函数y=logax (a0 , a1)图象关于y=x对称单调性1,在(-,+ )上为增函数a1,在(0,+ )上为增函数a1 ? y0? y0?比较两个幂值的大小,是一类易错题,解决这类问题,首先要分清底数相同还是指数相同,如果底数相同,可利用指数函数的单调性;指数相同,可以利用指数函数的底数与图象关系(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论