受压构件的截面承载力PPT课件_第1页
受压构件的截面承载力PPT课件_第2页
受压构件的截面承载力PPT课件_第3页
受压构件的截面承载力PPT课件_第4页
受压构件的截面承载力PPT课件_第5页
已阅读5页,还剩60页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 第5章受压构件的截面承载力 教学要求 1理解轴心受压螺旋筋柱间接配筋的原理 2深刻理解偏心受压构件的破坏形态和矩形截面受压承载力的计算简图和基本计算公式 3熟练掌握矩形截面对称配筋偏心受压构件的受压承载力计算 4领会受压构件中纵向钢筋和箍筋的主要构造要求 2 5 1受压构件一般构造要求 5 1 1截面形式及尺寸 为便于制作模板 轴心受压构件截面一般采用方形或矩形 有时也采用圆形或多边形 偏心受压构件一般采用矩形截面 但为了节约混凝土和减轻柱的自重 特别是在装配式柱中 较大尺寸的柱常常采用 形截面 拱结构的肋常做成T形截面 采用离心法制造的柱 桩 电杆以及烟囱 水塔支筒等常采用环形截面 方形柱的截面尺寸不宜小于250mm 250mm 为了避免矩形截面轴心受压构件长细比过大 承载力降低过多 常取l0 b 30 l0 h 25 此处l0为柱的计算长度 b为矩形截面短边边长 h为长边边长 此外 为了施工支模方便 柱截面尺寸宜采用整数 800mm及以下的 宜取50mm的倍数 800mm以上的 可取100mm的倍数 对于I形截面 翼缘厚度不宜小于120mm 因为翼缘太薄 会使构件过早出现裂缝 同时在靠近柱底处的混凝土容易在车间生产过程中碰坏 影响柱的承载力和使用年限 腹板厚度不宜小于100mm 地震区采用I形截面柱时 其腹板宜再加厚些 3 混凝土强度等级对受压构件的承截能力影响较大 为了减小构件的截面尺寸 节省钢材 宜采用较高强度等级的混凝土 一般采用C30 C35 C40 对于高层建筑的底层柱 必要时可采用高强度等级的混凝土 纵向钢筋一般采用HRB400级 RRB400级和HRB500级钢筋 不宜采用高强度钢筋 这是由于它与混凝土共同受压时 不能充分发挥其高强度的作用 箍筋一般采用HRB400级 HRB335级钢筋 也可采用HPB300级钢筋 5 1 2材料强度要求 4 柱中纵向钢筋直径不宜小于12mm 全部纵向钢筋的配筋率不宜大于5 详见5 2 1节末 全部纵向钢筋配率不应小于附表4 5中给出的最小配筋百分率 min 且截面一侧纵向钢筋配筋率不应小于0 2 图5 1方形 矩形截面箍筋形式 5 1 3纵筋 5 5 1 4箍筋 为了能箍住纵筋 防止纵筋压曲 柱及其他受压构件中的周边箍筋应做成封闭式 其间距在绑扎骨架中不应大于15d d为纵筋最小直径 且不应大于400mm 也不大于构件横截面的短边尺寸 箍筋直径不应小于d 4 d为纵筋最大直径 且不应小于6mm 图5 1方形 矩形截面箍筋形式 图5 2I形 L形截面箍筋形式 6 5 2轴心受压构件正截面受压承载力 在实际工程结构中 由于混凝土材料的非匀质性 纵向钢筋的不对称布置 荷载作用位置的不准确及施工时不可避免的尺寸误差等原因 使得真正的轴心受压构件几乎不存在 但在设计以承受恒荷载为主的多层房屋的内柱及桁架的受压腹杆等构件时 可近似地按轴心受压构件计算 另外 轴心受压构件正截面承载力计算还用于偏心受压构件垂直弯矩平面的承载力验算 一般把钢筋混凝土柱按照箍筋的作用及配置方式的不同分为两种 配有纵向钢筋和普通箍筋的柱 简称普通箍筋柱 配有纵向钢筋和螺旋式或焊接环式箍筋的柱 统称螺旋箍筋柱 7 5 2 1轴心受压普通箍筋柱的正截面受压承载力计算 图5 3配有纵筋和箍筋的柱 1受力分析和破坏形态 图5 4应力 荷载曲线示意图 图5 5短柱的破坏 8 图5 6长柱的破坏 试验表明 长柱的破坏荷载低于其他条件相同的短柱破坏荷载 长细比越大 承载能力降低越多 其原因在于 长细比越大 由于各种偶然因素造成的初始偏心距将越大 从而产生的附加弯矩和相应的侧向挠度也越大 对于长细比很大的细长柱 还可能发生失稳破坏现象 此外 在长期荷载作用下 由于混凝土的徐变 侧向挠度将增大更多 从而使长柱的承载力降低的更多 长期荷载在全部荷载中所占的比例越多 其承载力降低的越多 9 混凝土结构设计规范 采用稳定系数 来表示长柱承载力的降低程度 10 2承载力计算公式 图5 8普通箍筋柱正截面受压承载力计算简图 构件计算长度与构件两端支承情况有关 当两端铰支时 取l0 l l是构件实际长度 当两端固定时 取l0 0 5l 当一端固定 一端铰支时 取l0 0 7l 当一端固定 一端自由时取l0 2l 在实际结构中 构件端部的连接不像上面几种情况那样理想 明确 这会在确定l0时遇到困难 为此 混凝土结构设计规范 对单层厂房排架柱 框架柱等的计算长度作了具体规定 分别见中册第12 13章 11 图5 9长期荷载作用下截面上混凝土和钢筋的应力重分布 a 混凝土 b 钢筋 轴心受压构件在加载后荷载维持不变的条件下 由于混凝土徐变 则随着荷载作用时间的增加 混凝土的压应力逐渐变小 钢筋的压应力逐渐变大 一开始变化较快 经过一定时间后趋于稳定 在荷载突然卸载时 构件回弹 由于混凝土徐变变形的大部分不可恢复 故当荷载为零时 会使柱中钢筋受压而混凝土受拉 见图5 9 若柱的配筋率过大 还可能将混凝土拉裂 若柱中纵筋和混凝土之间有很强结应力时 则能同时产生纵向裂缝 这种裂缝更为危险 为了防止出现这种情况 故要控制柱中纵筋的配筋率 要求全部纵筋配筋率不宜超过5 12 5 2 2轴心受压螺旋箍筋柱的正截面受压承截力计算 图5 10螺旋箍筋和焊接环筋柱 螺旋箍筋柱和焊接环筋柱的配箍率高 而且不会像普通箍筋那样容易 崩出 因而能约束核心混凝土在纵向受压时产生的横向变形 从而提高了混凝土抗压强度和变形能力 这种受到约束的混凝土称为 约束混凝土 在柱的横向采用螺旋箍筋或焊接环筋也能像直接配置纵向钢筋那样起到提高承载力和变形能力的作用 故把这种配筋方式称为 间接配筋 13 图5 11混凝土径向压力示意图 称为间接钢筋对混凝土约束的折减系数 当混凝土强度等级不超过C50时 取 1 0 当混凝土强度等级为C80时 取 0 85 当混凝土强度等级在C50与C80之间时 按直线内插法确定 14 为使间接钢筋外面的混凝土保护层对抵抗脱落有足够的安全 按式 5 9 算得的构件承载力不应比按式 5 4 算得的大50 凡属下列情况之一者 不考虑间接钢筋的影响而按式 5 4 计算构件的承载力 1 当l0 d 12时 此时因长细比较大 有可能因纵向弯曲引起螺旋筋不起作用 2 当按式 5 9 算得受压承载力小于按式 5 4 算得的受压承载力时 3 当间接钢筋换算截面面积Ass0小于纵筋全部截面面积的25 时 可以认为间接钢筋配置得太少 套箍作用的效果不明显 如在正截面受压承载力计算中考虑间接钢筋的作用时 箍筋间距不应大于80mm及dcor 5 也不小于40mm 间接钢筋的直径按箍筋有关规定采用 15 5 3偏心受压构件正截面受压破坏形态 5 3 1偏心受压短柱的破坏形态试验表明 钢筋混凝土偏心受压短柱的破坏形态有受拉破坏和受压破坏两种破坏形态 1受拉破坏形态受拉破坏又称大偏心受压破坏 它发生于轴向压力N的相对偏心距较大 且受拉钢筋配置得不太多时 图5 12受拉破坏时的截面应力和受拉破坏形态截面应力 b 受拉破坏形态 受拉破坏形态的特点是受拉钢筋先达到屈服强度 最终导致压区混凝土压碎截面破坏 这种破坏形态与适筋梁的破坏形态相似 16 受压破坏形态又称小偏心受压破坏 截面破坏是从受压区开始的 图5 13受压破坏时的截面应力和受压破坏形态 a b 截面应力 c 受压破坏形态 受压破坏形态或称小偏心受压破坏形态的特点是混凝土先被压碎 远侧钢筋可能受拉也可能受压 但基本上都不屈服 属于脆性破坏类型 2受压破坏形态 17 在 受拉破坏形态 与 受压破坏形态 之间存在着一种界限破坏形态 称为 界限破坏 它不仅有横向主裂缝 而且比较明显 其主要特征是 在受拉钢筋应力达到屈服强度的同时 受压区混凝土被压碎 界限破坏形态也属于受拉破坏形态 试验还表明 从加载开始到接近破坏为止 沿偏心受压构件截面高度 用较大的测量标距量测到的偏心受压构件的截面各处的平均应变值都较好地符合平截面假定 图5 14反映了两个偏心受压试件中 截面平均应变沿截面高度变化规律的情况 图5 14偏心受压构件截面实测的平均应变分布受压破坏情况e0 h0 0 24 b 受拉破坏情况e0 h0 0 68 18 5 3 2偏心受压长柱的破坏类型 图5 15长柱实测N f曲线 偏心受压长柱在纵向弯曲影响下 可能发生失稳破坏和材料破坏两种破坏类型 长细比很大时 构件的破坏不是由材料引起的 而是由于构件纵向弯曲失去平衡引起的 称为 失稳破坏 当柱长细比在一定范围内时 虽然在承受偏心受压荷载后 偏心距由ei增加到ei f 使柱的承载能力比同样截面的短柱减小 但就其破坏特征来讲与短柱一样都属于 材料破坏 即因截面材料强度耗尽而产生破坏 19 在图5 16中 示出了截面尺寸 配筋和材料强度等完全相同 仅长细比不相同的3根柱 从加载到破坏的示意图 图5 16不同长细比柱从加荷到破坏的N M关系 20 5 4偏心受压构件的二阶效应 轴向压力对偏心受压构件的侧移和挠曲产生附加弯矩和附加曲率的荷载效应称为偏心受压构件的二阶荷载效应 简称二阶效应 其中 由侧移产生的二阶效应 习称P 效应 由挠曲产生的二阶效应 习称P 效应 21 1杆端弯矩同号时的二阶效应 1 控制截面的转移 图5 17杆端弯矩同号时的二阶效应 P 效应 5 4 1由挠曲产生的二阶效应 P 效应 22 2 考虑二阶效应的条件杆端弯矩同号时 发生控制截面转移的情况是不普遍的 为了减少计算工作量 混凝土结构设计规范 规定 当只要满足下述三个条件中的一个条件时 就要考虑二阶效应 M1 M2 0 9或 轴压比N fcA 0 9或 lci 34 12 M1 M2 23 3 考虑二阶效应后控制截面的弯矩设计值 混凝土结构设计规范 规定 除排架结构柱外 其他偏心受压构件考虑轴向压力在挠曲杆件中产生的二阶效应后控制截面的弯矩设计值 应按下列公式计算 其中 当 对剪力墙肢及核心筒墙肢类构件 取1 0 时取1 0 24 2杆端弯矩异号时的二阶效应 图5 18杆端弯矩异号时的二阶效应 P 效应 虽然轴向压力对杆件长度中部的截面将产生附加弯矩 增大其弯矩值 但弯矩增大后还是比不过端节点截面的弯矩值 即不会发生控制截面转移的情况 故不必考虑二阶效应 25 5 4 2由侧移产生的二阶效应 P 效应 图5 19由侧移产生的二阶效应 P 效应 附加弯矩将增大框架柱截面的弯矩设计值 故在框架柱的内力计算中应考虑P 效应 总之 P 效应是在内力计算中考虑的 P 效应是在杆端弯矩同号 且满足式 5 11a b c 三个条件中任一个条件的情况下 必须在截面承载力计算中考虑 其他情况则不予考虑 26 5 5矩形截面偏心受压构件正截面受压承载力的基本计算公式 5 5 1区分大 小偏心受压破坏形态的界限 图5 20偏心受压构件正截面在各种破坏情况时沿截面高度的平均应变分布 大偏心受压破坏 小偏心受压破坏 27 5 5 2矩形截面偏心受压构件正截面的承载力计算 1矩形截面大偏心受压构件正截面受压承载力的基本计算公式 图5 21大偏心受压截面承载力计算简图 1 计算公式 28 2 适用条件为了保证构件破坏时受拉区钢筋应力先达到屈服强度 要求 2 为了保证构件破坏时 受压钢筋应力能达到屈服强度 与双筋受弯构件一样 要求满足 29 2矩形截面小偏心受压构件正截面受压承载力的基本计算公式 图5 22小偏心受压截面承载力计算简图 a cy b As受拉或受压 但都不屈服 b h h0 cy As受压屈服 但x h c cy 且 h h0 As受压屈服 且全截面受压 30 31 1 按平截面假定 s 0 0033 0 8 1 2 回归方程 s 0 0044 0 81 3 简化公式 s fy Es 0 8 0 8 b 32 3矩形截面小偏心受压构件及向破坏的正截面承载力计算 当偏心距很小 As 比As大得多 且轴向力很大时 截面的实际形心轴偏向As 导致偏心方向的改变 有可能在离轴向力较远一侧的边缘混凝土先压坏的情况 称为反向破坏 图5 24反向破坏时的截面承载力计算简图 对As 合力点取矩 得 截面设计时 令Nu N 按式 5 29 求得的As应不小于 minbh min 0 2 否则应取As 0 002bh 数值分析表明 只有当N 1fcbh时 按式 5 29 求得的As才有可能大于0 002bh 当N 1fcbh时 求得的As总是小于0 002bh 所以 混凝土结构规范 规定 当N fcbh时 尚应验算反向破坏的承载力 对As 合力点取矩 得 对As 合力点取矩 得 33 5 6矩形截面非对称配筋偏心受压构件正截面受压承载力计算 5 6 1截面设计 先算出偏心距ei 初步判别构件的偏心类型 当ei 0 3h0时 可先按大偏心受压情况计算 当ei 0 3h0时 则先按属于小偏心受压情况计算 然后应用有关计算公式求得钢筋截面面积As及As 求出As As 后再计算x 用x xb x xb来检查原先假定的是否正确 如果不正确需要重新计算 在所有情况下 As及As 还要满足最小配筋率的规定 同时 As As 不宜大于bh的5 最后 要按轴心受压构件验算垂直于弯矩作用平面的受压承载力 34 1大偏心受压构件的截面设计 1 已知 截面尺寸b h 混凝土的强度等级 钢筋种类 在一般情况下As及As 取同一种钢筋 轴向力设计值N及弯矩设计值M 长细比lc h 求钢筋截面面积As及As 最后 按轴心受压构件验算垂直于弯矩作用平面的受压承载力 当其不小于N值时为满足 否则要重新设计 35 2 已知 b h N M fc fy fy lc h及受压钢筋As 的数量 求钢筋截面面积As 尚需注意 若求得x bh0 就应改用小偏心受压重新计算 如果仍用大偏心受压计算 则要采取加大截面尺寸或提高混凝土强度等级 加大As 的数量等措施 也可按As 未知的情况来重新计算 使其满足x bh0的条件 36 若x 2as 时 仿照双筋受弯构件的办法 对受压钢筋As 合力点取矩 计算As值 得 另外 再按不考虑受压钢筋As 即取As 0 利用式 5 13 式 5 14 求算As值 然后与用式 5 32 求得的As值作比较 取其中较小值配筋 最后也要按轴心受压构件验算垂直于弯矩作用平面的受压承载力 37 2小偏心受压构件正截面承载力设计 1 确定As 作为补充条件当 cy 且 b时 不论As配置多少 它总是不屈服的 为了经济 可取As minbh 0 002bh 同时考虑到防止反向破坏的要求 As按以下方法确定 当N fcbh时 取As 0 002bh 当N fcbh时 As由反向破坏的式 5 29 求得 如果As 0 002bh 取As 0 002bh 38 2 求出 值 再按 的三种情况求出As 1 代入平衡方程即可求出 如果以上求得的As值小于0 002bh 应取A s 0 002bh 39 5 6 2承载力复核进行承载力复核时 一般已知b h As和As 混凝土强度等级及钢筋级别 构件长细比lc h 分为两种情况 一种是已知轴向力设计值 求偏心距e0 即验算截面能承受的弯矩设计值M 另一种是已知e0 求轴向力设计值 不论哪一种情况 都需要进行垂直于弯矩作用平面的承载力复核 40 1弯矩作用平面的承载力复核 1 已知轴向力设计值N 求弯矩设计值M先将已知配筋和 b代入式 5 13 计算界限情况下的受压承载力设计值Nub 如果N Nub 则为大偏心受压 可按式 5 13 求x 再将x代入式 5 14 求e 则得弯矩设计值M Ne0 如N Nub 为小偏心受压 应按式 5 28 和式 5 30 求x 再将x代入式 5 21 求e 由式 5 16 式 15 17 求得e0 及M Ne0 另一种方法是 先假定 b 由式 5 13 求出x 如果 x h0 b 说明假定是对的 再由式 5 14 求e0 如果 xh0 b 说明假定有误 则应按式 5 20 式 5 23 求出x 再由式 5 21 求出e0 41 2 已知偏心距e0求轴向力设计值N因截面配筋已知 故可按图5 21对N作用点取矩求x 当x xb时 为大偏压 将x及已知数据代入式 5 13 可求解出轴向力设计值N即为所求 当x xb时 为小偏心受压 将已知数据代入式 5 20 式 5 21 和式 5 23 联立求解轴向力设计值N 由上可知 在进行弯矩作用平面的承载力复核时 与受弯构件正截面承载力复核一样 总是要求出x才能使问题得到解决 42 2垂直于弯矩作用平面的承载力复核无论是设计题或截面复核题 是大偏心受压还是小偏心受压 除了在弯矩作用平面内依照偏心受压进行计算外 都要验算垂直于弯矩作用平面的轴心受压承载力 此时 应考虑 值 并取b作为截面高度 43 5 7矩形截面对称配筋偏心受压构件正截面受压承载力计算 在实际工程中 偏心受压构件在不同内力组合下 可能有相反方向的弯矩 当其数值相差不大时 或即使相反方向的弯矩值相差较大 但按对称配筋设计求得的纵向钢筋的总量比按不对称配筋设计所得纵向钢筋的总量增加不多时 均宜采用对称配筋 装配式柱为了保证吊装不会出错 一般采用对称配筋 44 5 7 1截面设计 1大偏心受压构件的计算 当x 2as 时 可按不对称配筋计算方法一样处理 若x xb 也即 b时 则认为受拉筋As达不到受拉屈服强度 而属于 受压破坏 情况 就不能用大偏心受压的计算公式进行配筋计算 此时要用小偏心受压公式进行计算 45 2小偏心受压构件的计算 46 5 8I形截面非对称配筋偏心受压构件正截面受压承载力计算 图5 26I形截面大偏心受压计算图形 1 计算公式 1 当x hf 时 受压区为T形截面 见图5 26 按下列公式计算 2 当x hf 时 则按宽度bf 的矩形截面计算 5 8 1大偏心受压 47 2适用条件为了保证上述计算公式中的受拉钢筋As及受压钢筋As 能达到屈服强度 要满足下列条件 48 3计算方法 1 必须满足 2 3 另外 再按不考虑受压钢筋As 即取As 0 按非对称配筋构件计算As值 然后与用式 5 32 计算出来的As值作比较 取用小值配筋 具体配筋时 仍取用As As配置 但此As值是上面所求得的小的数值 49 1 计算公式对于小偏心受压I形截面 一般不会发生x hf 的情况 这里仅列出x hf 的计算公式 当 式中x值大于h时 取x h计算 对于小偏心受压构件 尚应满足下列条件 5 8 2小偏心受压 50 2适用条件x xb3计算方法I形截面对称配筋的计算方法与矩形截面非对称配筋的计算方法基本相同 一般可采用迭代法和近似公式计算法两种方法 采用迭代法时 s仍用式 5 23 计算 而式 5 20 和式 5 21 分别用式 5 51 式 5 52 或式 5 53 式 5 54 来替代即可 详见下例 或 51 5 9正截面承载力Nu Mu的相关曲线及其应用 试验表明 小偏心受压情况下 随着轴向压力的增加 正截面受弯承载力随之减小 但在大偏心受压情况下 轴向压力的存在反而使构件正截面的受弯承载力提高 在界限破坏时 正截面受弯承载力达到最大值 图5 29Nu Mu试验相关曲线 52 5 9 1对称配筋矩形截面大偏心受压构件的Nu Mu相关曲线 图5 30对称配筋时Nu Mu N M 相关曲线 53 5 9 2对称配筋矩形截面小偏心受压构件的Nu Mu的相关曲线 假定截面为局部受压 令 54 图5 30对称配筋时Nu Mu N M 相关曲线 55 整个曲线分为大偏心受压破坏和小偏心受压破坏两个曲线段 其特点是 1 Mu 0时 Nu最大 Nu 0时 Mu不是最大 界限破坏时 Mu最大 2 小偏心受压时 Nu随Mu的增大而减小 大偏心受压时 Nu随Mu的增大而增大 3 对称配筋时 如果截面形状和尺寸相同 混凝土强度等级和钢筋级别也相同 但配筋数量不同 则在界限破坏时 它们的Nu是相同的 因为Nu 1fcbxb 因此各条Nu Mu曲线的界限破坏点在同一水平处 见图5 30中的虚线 图5 30对称配筋时Nu Mu N M 相关曲线 5 9 3Nu Mu相关曲线的特点和应用 56 5 10偏心受压构件斜截面受剪承载力计算 5 10 1轴向压力对构件斜截面受剪承载力的影响 图5 31相对轴压力和剪力关系 图5 32不同剪跨比时Vu和N的回归公式对比图 57

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论