




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第4章 圆与方程求圆的方程【例1】求圆心在圆y22上,且与x轴和直线x都相切的圆的方程解设圆心坐标为(a,b),半径为r,因为圆y22在直线x的右侧,且所求的圆与x轴和直线x都相切,所以a.所以ra,r|b|.又圆心(a,b)在圆y22上,所以b22,联立解得所以所求圆的方程是(y1)21,或(y1)21.1求圆的方程的方法求圆的方程主要是联想圆系方程、圆的标准方程和一般方程,利用待定系数法解题2采用待定系数法求圆的方程的一般步骤(1)选择圆的方程的某一形式(2)由题意得a, b, r(或D, E, F)的方程(组)(3)解出a, b, r(或D, E, F)(4)代入圆的方程1已知半径为5的圆的圆心在x轴上,圆心的横坐标是整数且与直线4x3y290相切,求圆的方程解设圆心为M(m,0)(mZ),由于圆与直线4x3y290相切,且半径为5,所以5,即|4m29|25,因为m为整数,故m1,故所求圆的方程为(x1)2y225.直线与圆的位置关系【例2】已知直线l:2mxy8m30和圆C:x2y26x12y200.(1)mR时,证明l与C总相交;(2)m取何值时,l被C截得的弦长最短,求此弦长解(1)直线的方程可化为y32m(x4),由点斜式可知,直线过点P(4, 3)由于42(3)26412(3)20150,所以点P在圆内,故直线l与圆C总相交(2)如图,当圆心C(3, 6)到直线l的距离最大时,线段AB的长度最短此时PCl,所以直线l的斜率为,所以m.在APC中,|PC|,|AC|r5,所以|AP|2|AC|2|PC|2251015,所以|AP|,所以|AB|2,即最短弦长为2.直线与圆位置关系的判断:直线与圆位置关系的判断方法主要有代数法和几何法. 一般常用几何法,而不用代数法,因为代数法计算复杂,书写量大,易出错,而几何法较简单2已知圆C关于直线xy20对称,且过点P(2, 2)和原点O.(1)求圆C的方程;(2)相互垂直的两条直线l1,l2都过点A(1, 0),若l1,l2被圆C所截得弦长相等,求此时直线l1的方程解(1)由题意知,直线xy20过圆C的圆心,设圆心C(a, a2)由题意,得(a2)2(a22)2a2(a2)2,解得a2.因为圆心C(2,0),半径r2,所以圆C的方程为(x2)2y24.(2)由题意知,直线l1,l2的斜率存在且不为0,设l1的斜率为k,则l2的斜率为,所以l1:yk(x1),即kxyk0,l2:y(x1),即xky10.由题意,得圆心C到直线l1,l2的距离相等,所以,解得k1,所以直线l1的方程为xy10或xy10.圆与圆的位置关系【例3】已知圆C1:x2y24x4y50与圆C2:x2y28x4y70.(1)证明圆C1与圆C2相切,并求过切点的两圆公切线的方程;(2)求过点(2, 3)且与两圆相切于(1)中切点的圆的方程解(1)把圆C1与圆C2都化为标准方程形式,得(x2)2(y2)213,(x4)2(y2)213.圆心与半径长分别为C1(2,2),r1;C2(4,2),r2.因为|C1C2|2r1r2,所以圆C1与圆C2相切由得12x8y120,即3x2y30,就是过切点的两圆公切线的方程(2)由圆系方程,可设所求圆的方程为x2y24x4y5(3x2y3)0.点(2, 3)在此圆上,将点坐标代入方程解得.所以所求圆的方程为x2y24x4y5(3x2y3)0,即x2y28xy90.判断两圆位置关系的两种比较方法:(1)几何法是利用两圆半径和或差与圆心距作比较,得到两圆位置关系(2)代数法是把两圆位置关系的判断完全转化为代数问题,转化为方程组解的组数问题,从而体现了几何问题与代数问题之间的相互联系,但这种方法只能判断出不相交、相交和相切三种位置关系,而不能象几何法一样,能准确判断出外离、外切、相交、内切和内含五种位置关系3已知圆C1:x2y26x70与圆C2:x2y26y270相交于A, B两点,则线段AB的中垂线方程为_xy30AB的中垂线即为圆C1、圆C2的连心线C1C2. 又C1(3,0),C2(0,3),所以C1C2所在直线的方程为xy30.空间中点的坐标及距离公式的应用【例4】如图,已知正方体ABCDABCD的棱长为a,M为BD的中点,点N在AC上,且|AN|3|NC|,试求|MN|的长解由题意应先建立坐标系,以D为原点,建立如图所示空间直角坐标系 因为正方体棱长为a,所以B(a,a,0),A(a,0,a),C(0,a,a),D(0,0,a)由于M为BD的中点,取AC的中点O,所以M,O.因为|AN|3|NC|,所以N为AC的四等分点,从而N为OC的中点,故N.根据空间两点间的距离公式,可得|MN|a.求空间中坐标及两点间距离方法及注意点:(1)求空间两点间的距离时,一般使用空间两点间的距离公式,应用公式的关键在于建立适当的坐标系,确定两点的坐标(2)确定点的坐标的方法视具体题目而定,一般说来,要转化到平面中求解,有时也利用几何图形的特征,结合平面直角坐标系的知识确定4如图所示,直三棱柱ABCA1B1C1中,|C1C|CB|CA|2,ACCB,D,E分别是棱AB,B1C1的中点,F是AC的中点,求DE,EF的长度解以点C为坐标原点,CA、CB、CC1所在直线为x轴、y轴、z轴,建立如图所示
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高中情绪管理课件
- 高中地球与地图课件
- 高三地表形态的塑造
- 无子女家庭财产处理协议与离婚赡养责任合同
- 环保科技公司自然人股东股权继承与转让合同
- 高一《老人与海》课件
- 离婚谈判策略分析-三招识别对方心理弱点合同
- 广告媒体合作谈判代理合同
- 骨骼矫正推拿培训课件
- 农产品质量检测与安全监督
- 急性胰腺炎护理查房个案介绍ppt
- 黄芪注射液联合当归注射液对急性失血性休克围手术期血乳酸水平和氧代谢的影响
- 网络与信息安全事件报告表模板
- 2023年上海市选调生考试《申论》题库【真题精选+章节题库+模拟试题】
- 中学安全事故问责制度(试行)
- 港口航道疏浚工程案例
- DLT-969-2023年变电站运行导则
- 现代铁路铁道信号远程控制系统(第2版)PPT完整全套教学课件
- 通知证人出庭申请书
- 3、反渗透法设备安装及调试施工工艺工法要点
- 高压开关柜技术规范书
评论
0/150
提交评论