二次函数典型例题解析与习题训练.doc_第1页
二次函数典型例题解析与习题训练.doc_第2页
二次函数典型例题解析与习题训练.doc_第3页
二次函数典型例题解析与习题训练.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

例1 已知:二次函数为y=x2x+m(1) 写出它的图像的开口方向,对称轴及顶点坐标; (2)m为何值时,顶点在x轴上方(3)若抛物线与y轴交于A,过A作ABx轴交抛物线于另一点B,当SAOB=4时,求此二次函数的解析式例2 已知:m,n是方程x26x+5=0的两个实数根,且mn,抛物线y=x2+bx+c的图像经过点A(m,0),B(0,n),如图所示(1)求这个抛物线的解析式;(2)设(1)中的抛物线与x轴的另一交点为C,抛物线的顶点为D,试求出点C,D的坐标和BCD的面积;(3)P是线段OC上的一点,过点P作PHx轴,与抛物线交于H点,若直线BC把PCH分成面积之比为2:3的两部分,请求出P点的坐标例3 已知关于x的二次函数y=x2mx+与y=x2mx,这两个二次函数的图像中的一条与x轴交于A,B两个不同的点(1)试判断哪个二次函数的图像经过A,B两点;(2)若A点坐标为(1,0),试求B点坐标;(3)在(2)的条件下,对于经过A,B两点的二次函数,当x取何值时,y的值随x值的增大而减小? 课堂习题一、填空题1右图是二次函数y1=ax2+bx+c和一次函数y2=mx+n的图像,观察图像写出y2y1时,x的取值范围_2已知抛物线y=a2+bx+c经过点A(2,7),B(6,7),C(3,8),则该抛物线上纵坐标为8的另一点的坐标是_3已知二次函数y=x2+2x+c2的对称轴和x轴相交于点(m,0),则m的值为_4若二次函数y=x24x+c的图像与x轴只有1个交点,则c=_ 5已知抛物线y=ax2+bx+c经过点(1,2)与(1,4),则a+c的值是_6甲,乙两人进行羽毛球比赛,甲发出一十分关键的球,出手点为P,羽毛球飞行的水平距离s(m)与其距地面高度h(m)之间的关系式为h=s2+s+如下左图所示,已知球网AB距原点5m,乙(用线段CD表示)扣球的最大高度为m,设乙的起跳点C的横坐标为m,若乙原地起跳,因球的高度高于乙扣球的最大高度而导致接球失败,则m的取值范围是_ 7 二次函数y=x22x3与x轴两交点之间的距离为_8杭州市“安居工程”新建成的一批楼房都是8层高,房子的价格y(元/m2)随楼层数x(楼)的变化而变化(x=1,2,3,4,5,6,7,8),已知点(x,y)都在一个二次函数的图像上(如上右图),则6楼房子的价格为_元/m2二、选择题9二次函数y=ax2+bx+c的图像如图所示,则下列关系式不正确的是( )Aa0 Ca+b+c0 (第9题) (第12题) (第15题)10已知二次函数y=ax2+bx+c的图像过点A(1,2),B(3,2),C(5,7)若点M(2,y1),N(1,y2),K(8,y3)也在二次函数y=ax2+bx+c的图像上,则下列结论中正确的是( ) Ay1y2y3 By2y1y3 Cy3y1y2 Dy1y30)交x轴A,B两点,交y轴于点C,抛物线的对称轴交x轴于点E,点B的坐标为(1,0)(1)求抛物线的对称轴及点A的坐标; (2)过点C作x轴的平行线交抛物线的对称轴于点P,你能判断四边形ABCP是什么四边形?并证明你的结论;18如图所示,m,n是方程x26x+5=0的两个实数根,且mn,抛物线y=x2+bx+c的图像经过点A(m,0),B(0,n) (1)求这个抛物线的解析式; (2)设(1)中抛物线与x轴的另一交点为C,抛物线的顶点为D,试求出点C,D的坐标和BCD的面积; (3)P是线段OC上的一点,过点P作PHx轴,与抛物线交于点H,若直线BC把 PCH分成面积之比为2:3的两部分,请求出点P的坐标19某地计划开凿一条单向行驶(从正中通过)的隧道,其截面是抛物线拱形ACB,而且能通过最宽3m,最高3.5m的厢式货车按规定,机动车通过隧道时车身距隧道壁的水平距离和铅直距离最小都是0.5m为设计这条能使上述厢式货车恰好完全通过的隧道,在图纸上以直线AB为x轴,线段AB的垂直平分线为y轴,建立如图所示的直角坐标系,求抛物线拱形的表达式,隧道的跨度AB和拱高OC20已知一个二次函数的图像过如图所示三点 (1)求抛物线的对称轴;(2) 平行于x轴的直线L的解析式为y=,抛物线与x轴交于A,B两点在抛物线的对称轴上找点P,使BP的长等于直线L与x轴间的距离求点P的坐标21如图所示,二次函数y=a

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论