小学奥数五年级经典题解题技巧大全—割补、拼接、截割.docx_第1页
小学奥数五年级经典题解题技巧大全—割补、拼接、截割.docx_第2页
小学奥数五年级经典题解题技巧大全—割补、拼接、截割.docx_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

经典题解题技巧大全【割补】在数学中,把图形的某个部分割下,补到某一个新的位置,往往可以使新的图形,更便于发现数量关系,从而较快地解答出数学题目。例如,在图4.38中,三个圆的面积都是12.56平方厘米,且三个圆两两相交,三个交点都是圆心,求三块阴影部分的面积。从表面上看,题目是无法解答的。但只要仔细观察就能发现,根据轴对称性及割补方法,题目可作如下的解答:如图4.39,将图形1翻折到图形2的位置;再将图形3和4割下来,合并在一起,补到图形5的位置上。于是,原来的阴影部分就正好拼成了一个半圆。所以,三块阴影部分的面积是12.562=6.28(平方厘米)【拼接,截割】(1)平面图形的拼接、截割。拼接和截割,是两个相反的过程。平面图形的拼接是把两个或两个以上的图形拼接在一起;平面图形的截割,是把一个图形截割成两个或两个以上的图形。平面几何图形拼接或截割以后,面积和周长的变化有以下规律:两个或两个以上的图形拼接成一个新的几何图形,它的面积等于原来若干个几何图形的面积之和;而周长却会比原图形周长之和要短。如果拼接部分的总长度为a,那么拼接后减少的周长就是2a。把一个平面几何图形截割以后,各小块图形的面积之和,等于原图形的面积;但截割后各小块几何图形的周长之和,要比原图形的周长要长。若所有截割部分长度为a,那么截割后增加的长度就是2a。依据这一规律,可快速地解答一些几何问题。例如,如图4.40,正方形被均分为大小、形状完全相同的三个长方形,每个长方形周长都是48厘米,求正方形的周长。解题时,可以把大正方形看成是三个小长方形拼接而成的,三个小长方形的拼接部分,都是小长方形的长,长度等于大正方形的“边长”。拼接以后的图形(大正方形)的周长,比原来的三个小长方形的周长之和,要减少4个“边长”,而这4个“边长”正好相当于大正方形的周长。这就是说,三个小长方形的周长之和里,刚好包含有两个大正方形的周长。所以,正方形的周长是4832=1442=72(厘米)(2)立体图形的拼接、截割。立体几何图形拼接或截割以后,它的体积和表面积的变化,有以下规律:两个或两个以上的几何体,拼接成一个新几何体以后,它的体积等于原来若干个几何体体积之和;但是它的表面积却比原来若干个几何体的表面积之和要小。如果重叠部分为S,那么减少的面积就是2S。把一个几何体截割以后,各部分的体积之和等于原几何体体积;但截割后的表面积之和,却大于原几何体的表面积。如果其中的截割面积为S,那么,增加的表而积就是2S。依据这一规律,可以较快地解答出某些题目。例如,如图4.41,把一个棱长为5厘米的正方体木块锯成两个形状大小完全相同的长方体(不计损耗),表面积会增加多少平方厘米?因为正方体木块的截割面积为55=25(平方厘米),依据上面的规律可知,表面积会增加252=50(平方厘米)又如,把长10厘米、宽6厘米、高5厘米的长方体木块截成形状、大小相同的两个长方体,表面会增加多少平方厘米?由于此题未交代从何处下手截割,所以要分三种情况来解答题目。如图4.42左图的截法,表面积会增加。562=302=60(平方厘米)如图4.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论