




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课时分层作业(十四)变量的相关性(建议用时:60分钟)合格基础练一、选择题1下列两个变量之间的关系,哪个不是函数关系()A正方体的棱长和体积B圆半径和圆的面积C正n边形的边数和内角度数之和D人的年龄和身高DA、B、C都是函数关系,对于A,Va3;对于B,Sr2;对于C,g(n)(n2).而对于年龄确定的不同的人可以有不同的身高,选D.2已知变量x,y之间具有线性相关关系,其散点图如图所示,则其回归方程可能为()A.1.5x2B.1.5x2C.1.5x2D.1.5x2B由散点图知,变量x、y呈负相关,且回归直线在y轴上的截距大于0,故0,0.因此回归方程可能为1.5x2.3有几组变量:汽车的重量和汽车每消耗1升汽油所行驶的平均路程;平均日学习时间和平均学习成绩;立方体的棱长和体积其中两个变量成正相关的是()ABC DC是负相关;是正相关;是函数关系,不是相关关系4设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系根据一组样本数据(xi,yi)(i1,2,n),用最小二乘法建立的回归直线方程为0.85x85.71,则下列结论中不正确的是()Ay与x具有正的线性相关关系B回归直线过样本点的中心(,)C若该大学某女生身高增加1 cm,则其体重约增加0.85 kgD若该大学某女生身高为170 cm,则可断定其体重必为58.79 kgD为正数,所以两变量具有正的线性相关关系,故A正确;B,C显然正确;若该大学某女生身高为170 cm,则可估计其体重为58.79 kg.5某产品的广告费用x与销售额y的统计数据如下表:广告费用x/万元4235销售额y/万元49263954根据上表可得回归直线方程bxa中的为9.4,据此模型预报广告费用为6万元时,销售额为()A63.6万元 B65.5万元C67.7万元 D72.0万元B(4235)3.5,(49263954)42,所以429.43.59.1,所以回归直线方程为9.4x9.1,令x6,得9.469.165.5(万元)故选B.二、填空题6若施化肥量x(千克/亩)与水稻产量y(千克/亩)的回归直线方程为5x250,当施化肥量为80千克/亩时,预计水稻产量为亩产_千克左右650当x80时,400250650.7已知一个回归直线方程为1.5x45,x1,7,5,13,19,则_.58.5因为(1751319)9,且回归直线过样本中心点(,),所以1.594558.5.8调查了某地若干户家庭的年收入x(单位:万元)和年饮食支出y(单位:万元),调查显示年收入x与年饮食支出y具有线性相关关系,并由调查数据得到y对x的回归直线方程:0.254x0.321.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加_万元0.254由0.254x0.321知,当x增加1万元时,年饮食支出y增加0.254万元三、解答题9某工厂对某产品的产量与成本的资料分析后有如下数据:产量x(千件)2356成本y(万元)78912(1)画出散点图;(2)求成本y与产量x之间的线性回归直线方程(结果保留两位小数)解(1)散点图如图所示(2)设y与产量x的线性回归直线方程为bxa,4,9,91.1044.60.回归直线方程为:1.10x4.60.10某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:单价x(元)88.28.48.68.89销量y(件)908483807568(1)求回归直线方程x,其中20;(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润销售收入成本)解(1)由于(x1x2x3x4x5x6)8.5,(y1y2y3y4y5y6)80.所以80208.5250,从而回归直线方程为20x250.(2)设工厂获得的利润为L元,依题意得Lx(20x250)4(20x250)20x2330x1 00020(x8.25)2361.25.当且仅当x8.25时,L取得最大值,故当单价定为8.25元时,工厂可获得最大利润等级过关练1根据如下样本数据x345678y4.02.50.50.52.03.0得到的回归直线方程为bxa,则()Aa0,b0 Ba0,b0Ca0,b0 Da0,b0B作出散点图如下:观察图象可知,回归直线方程bxa的斜率b0,当x0时,a0.故a0,b0.2已知x与y之间的几组数据如下表:x123456y021334假设根据上表数据所得线性回归直线方程为bxa.若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为ybxa,则以下结论正确的是()A.b,a B.b,aC.a D.b,aC根据所给数据求出直线方程ybxa和回归直线方程的系数,并比较大小由(1,0),(2,2)求b,a.b2,a0212.求,时,a.3期中考试后,某校高三(9)班对全班65名学生的成绩进行分析,得到数学成绩y对总成绩x的回归直线方程为60.4x.由此可以估计:若两个同学的总成绩相差50分,则他们的数学成绩大约相差_分20令两人的总成绩分别为x1,x2.则对应的数学成绩估计为160.4x1,260.4x2,所以|12|0.4(x1x2)|0.45020.4某数学老师身高176 cm,他爷爷、父亲和儿子的身高分别是173 cm,170 cm和182 cm.因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为_ cm.185儿子和父亲的身高可列表如下:父亲身高173170176儿子身高170176182设回归直线方程x,由表中的三组数据可求得1,故1761733,故回归直线方程为3x,将x182代入得孙子的身高为185 cm.5假设关于某设备的使用年限x(年)和所支出的年平均维修费用y(万元)(即维修费用之和除以使用年限),有如下的统计资料:使用年限x23456维修费用y2.23.85.56.57.0(1)画出散点图;(2)从散点图中发现使用年限与所支出的年平均维修费用之间关系的一般规律;(3)求回归直线方程;(4)估计使用年限为10年时所支出的年平均维修费用是多少?解(1)画出散点图如图所示(2)由图可知,各点散布在从左下角到右上角的区域里,因此,使用年限与所支出的年平均维修费用之间成正相关,即使用年限越长,所支出的年平均维修费用越多(3)从散点图可以看出,这些点大致分布在一条直线的附近,因此
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 甘孜森工集团考试题及答案
- 人工智能助力老年医学学科知识更新与迭代
- 2017年广东省中考英语真题及答案
- 法律行政考试题目及答案
- 2025海运进口货物代理报关委托合同范本
- 物业消防基础试题及答案
- 2025年中国手动旋转门行业市场全景分析及前景机遇研判报告
- 城区支线管网改造提升项目环境影响报告书
- 再生电解铜生产线项目社会稳定风险评估报告
- 开发区污水处理厂扩容提质建设项目社会稳定风险评估报告
- 行政执法应诉培训课件
- GB/T 45958-2025网络安全技术人工智能计算平台安全框架
- 阿尔茨海默病营养管理
- 养老护理员职业道德课件
- 护理专业全面解析
- 除颤护理课件
- 【化学 云南卷】2025年云南省高考招生统一考试真题化学试卷(含答案)
- 创伤性硬膜下出血查房
- 2025年廉政法规知识试题及答案
- 拔罐适应症研究-洞察及研究
- 2025《政务数据共享条例》法律法规课件
评论
0/150
提交评论