



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
纵向数据中线性混合模型的估计与检验【摘要】:在对社会学,生物学,经济学以及农业等学科的连续性纵向数据研究时,线性混合效应模型是很受欢迎的研究工具。这是因为模型中随机效应和误差的分布往往假设为正态分布,这样我们就可以很方便的使用极大似然估计方法(MLE)或者限制极大似然估计方法(RMLE)来研究模型中的参数性质。特别地,人们可以使用SAS,R等统计软件直接分析数据。然而,随着对线性混合模型研究的深入,人们发现实际数据中正态性假设并不完全成立,特别是随机效应的正态性假设更值得怀疑。如何检验模型中的分布的正态性,以及拒绝正态性假设后,如何估计模型参数,研究随机效应和误差的局部性质是本文要研究的问题。在论文的第一部分,我们将研究线性混合效应模型中随机效应的正态性假设。在文献中,基于经验特征函数,EppsPulley(1983)提出了对一维随机变量的正态性假设的拟和检验,BaringhausHenze(1988)解决了多维随机向量的正态性检验问题,与此类似的检验被统计学家统称为BHEP检验。这里,我们推广HenzeWanger(1997)提出的BHEP检验方法来构造我们的检验统计量。因为模型中随机效应是不可观测的,我们只有使用相应的最优线性无偏预测(BLUP)。研究发现,文中的检验统计量在原假设下渐近收敛于一个零均值的高斯过程,并且对以参数速度收敛到原假设的被择分布特别敏锐。因为极限高斯过程不易用来模拟检验统计量的临界值,我们提出了条件蒙特卡洛模拟方法(CMCT)。为了直观的研究我们的检验统计量的功效,我们给出了不同分布假设下,检验的p-值,并与文献中已有的两种检验方法作了比较。此外,我们还进行的了一些实际数据分析。经过上述检验方法分析实际数据,我们发现正态性假设确实不完全成立。在论文的余下部分,我们来研究非正态假设下如何估计模型的未知参数,以及研究随机效应和误差的局部性质,也就是估计它们的一些高阶矩,文中我们主要研究了前四阶矩的非参数估计。首先,当模型中的随机效应是一维的并且其协变量都是1时,我们利用模型的特征构造了前四阶矩的估计方程,而后给出相应的非参数估计。通过对所有估计的渐近性质的研究,我们发现,如果每组实验的次数也能足够多时,我们的估计拥有最小的渐近方差。在这种意义上说,我们的方法优于第一个研究此问题的文献CoxHall(2002)提出的估计方法。此外,在他们的模型下,我们也可以从另一个角度更简单的构造他们的估计方程。通过一些简单的模拟,也证实了我们的估计方法的优越性,特别是对误差的高阶矩的估计。但是,无论我们的估计方法或者他们的都很难推广到更高阶矩的估计或者随机效应为多维时更一般的情形。正如Jiang(2006)所说的那样,对于这种一般的模型,我们很难建立估计方程。为了解决这个问题,我们提出了一个简单的矩估计方法。主要推导工具是矩阵中Kronecker乘积,矩阵拉直运算以及数学期望。我们研究了随机效应和误差的前四阶矩估计的渐近性质,并给出了简单的模拟结果。比较上述两种估计法,我们发现:当随机效应是一维的时侯,误差的各阶矩的估计不依赖不可观测的随机效应,随机效应的估计也不依赖误差,因此,估计的渐近方差结构特别简单也是最优的;而当随机效应是多维的,因为随机效应的协变量的影响,我们没有办法针对随机效应和误差的各阶矩分别建立估计方程,这导致所得的估计的渐近方差或者协方差矩阵特别复杂,从而估计的效果不是很好。因此,我们提出了正交的矩估计方法。我们知道,对任意一个矩阵A,只要它不是行满秩的就会存在正交矩阵B使得BA=0。例如,人们经常使用的QR分解方法找到正交矩阵B,更直接地,B可以取为矩阵A的正交投影矩阵。利用矩阵的这个性质,我们首先把模型中随机效应部分去掉,根据得到的只含有误差的模型来估计误差的各阶矩;而对于随机效应的各阶矩的估计,我们没有办法也同样地去除误差,只好利用前面提出的估计方程,插入误差的各阶矩的正交估计而得到相应的估计。【关键词】:线性混合模型极大似然估计限制极大似然估计BHEP检验渐近正态性矩估计Kronecker乘积矩阵拉直算法正交矩阵【学位授予单位】:华东师范大学【学位级别】:博士【学位授予年份】:2009【分类号】:O212.1【目录】:摘要10-12ABSTRACT(英文摘要)12-14主要符号对照表14-15第一章引言15-201.1问题的提出15-181.2本文的主要工作18-20第二章线性混合模型中正态性拟和检验20-412.1引言20-212.2检验统计量及其渐近性质21-242.3条件蒙特卡洛模拟方法(CMCT)24-262.4模拟研究与实际数据分析26-292.5附录29-41第三章一维随机线性混合效应模型中的矩估计41-663.1引言41-423.2矩估计42-483.3最小方差估计48-543.4模拟研究543.5附录54-66第四章线性混合模型中矩估计方法66-804.1引言66-674.2矩估计方法67-704.3估计的渐近正态性70-714.4模拟研究71-724.5附录72-80第五章线性混合模型中正交的矩估计方法80-965.1引言805.2正交的矩估计方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年四平市民族宗教事务服务中心等事业单位公开选调工作人员笔试考前自测高频考点模拟试题及答案详解(考点梳理)
- 2025第十三届贵州人才博览会贵阳贵安事业单位引进高层次及急需紧缺人才770人模拟试卷及参考答案详解
- 2025湖北神农架优抚医院招聘医疗卫生专业技术人员考前自测高频考点模拟试题附答案详解(突破训练)
- 2025湖南科技学院招聘44人模拟试卷完整答案详解
- 2025第十三届人才博览会贵阳市公共卫生救治中心引进高层次人才18人模拟试卷及答案详解(有一套)
- 2025春季中材国际校园招聘163人模拟试卷附答案详解
- 2025昆明市盘龙职业高级中学烹饪教师招聘(1人)模拟试卷附答案详解(模拟题)
- 2025年德阳市事业单位公开考试招聘工作人员笔试考前自测高频考点模拟试题及完整答案详解1套
- 2025内蒙古通辽市科左中旗教体系统招聘(教师岗位)30人模拟试卷及一套参考答案详解
- 2025广东省云浮市云安区“粤聚英才粤见未来”招聘教育人才9人(南宁师范大学校区专场)模拟试卷完整参考答案详解
- 河堤护坡方案范本
- 2024年公路水运工程试验检测师交通工程真题及答案
- 2025机械设备购销合同样本模板
- 2025-2030固态储氢技术材料突破与商业化应用路径分析
- 农机农艺融合培训课件
- 张掖辅警考试题目及答案
- 绩效考核模板:物流企业客户服务、仓储管理、运输配送绩效指标
- 施工吊篮专项施工方案
- 2025年时事政治考试题库及参考答案(100题)
- 护士输液PDA扫码流程课件
- 2025成人高考专升本政治考试模拟试题及答案
评论
0/150
提交评论