(新课改地区)高考数学核心素养测评三十五等差与等比数列的综合问题新人教B版.docx_第1页
(新课改地区)高考数学核心素养测评三十五等差与等比数列的综合问题新人教B版.docx_第2页
(新课改地区)高考数学核心素养测评三十五等差与等比数列的综合问题新人教B版.docx_第3页
(新课改地区)高考数学核心素养测评三十五等差与等比数列的综合问题新人教B版.docx_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

核心素养测评三十五 等差与等比数列的综合问题(30分钟60分)一、选择题(每小题5分,共20分)1.已知1,a1,a2,9四个实数成等差数列,1,b1,b2,b3,9五个数成等比数列,则b2(a2-a1)=()A.8 B.-8 C.8D.【解析】选A.由1,a1,a2,9成等差数列,得公差d=a2-a1=,由1,b1,b2,b3,9成等比数列,得=19,所以b2=3,当b2=-3时,1,b1,-3成等比数列,此时=1(-3)无解,所以b2=3,所以b2(a2-a1)=3=8.2.等差数列an,等比数列bn,满足a1=b1=1,a5=b3,则a9能取到的最小整数是()A.-1B.0C.2D.3【解析】选B.等差数列an的公差设为d,等比数列bn的公比设为q,q0,由a1=b1=1,a5=b3,可得1+4d=q2,则a9=1+8d=1+2(q2-1)=2q2-1-1,可得a9能取到的最小整数是0.3.已知在等差数列an中,a10,d0,前n项和为Sn,等比数列bn满足b1=a1,b4=a4,前n项和为Tn,则()A.S4T4B.S41,数列bn单调递增,又S4-T4=a2+a3-(b2+b3)=a1+a4-a1q-=a1(1-q)+a4=(a4-a1q)=(b4-b2)0,所以S4T4.【一题多解】选A.不妨取an=7n-4,则等比数列bn的公比q=2,所以S4=54,T4=45,显然S4T4.4.(多选)等比数列an的前n项和为Sn,若对任意的正整数n,Sn+2=4Sn+3恒成立,则a1的值为()A.3B.1C.-3D.-1【解析】选BC.设等比数列an的公比为q,当q=1时,Sn+2=(n+2)a1,Sn=na1,由Sn+2=4Sn+3得,(n+2)a1=4na1+3,即3a1n=2a1-3,若对任意的正整数n,3a1n=2a1-3恒成立,则a1=0且2a1-3=0,矛盾,所以q1,所以Sn=,Sn+2=,代入Sn+2=4Sn+3并化简得a1(4-q2)qn=3+3a1-3q,若对任意的正整数n该等式恒成立,则有解得或故a1=1或-3.二、填空题(每小题5分,共20分)5.Sn为等比数列an的前n项和.若a1=1,且3S1 ,2S2,S3成等差数列,则an=_.【解析】由3S1,2S2,S3成等差数列,得4S2=3S1+S3,即3S2-3S1=S3-S2,则3a2=a3,得公比q=3,所以an=a1qn-1=3n-1.答案:3n-16.已知等差数列an的公差和首项都不等于0,且a2,a4,a8成等比数列,则=_.【解析】设公差为d,因为在等差数列an中,a2, a4,a8成等比数列,所以=a2a8,所以(a1+3d)2=(a1+d)(a1+7d),所以d2=a1d,因为d0,所以d=a1,所以=3.答案:37.(2020银川模拟)已知an是等差数列,a1=1,公差d0,Sn为其前n项和,若a1,a2,a5成等比数列,则S8=_.【解析】因为a1,a2,a5成等比数列,则=a1a5,即(1+d)2=1(1+4d),解得d=2.所以an=1+(n-1)2=2n-1,a8=28-1=15,S8=4(1+15)=64.答案:648.已知等差数列的公差d0,且a1,a3,a13成等比数列,若a1=1,Sn为数列的前n项和,则的最小值为_.【解析】依题意:因为a1,a3,a13成等比数列,a1=1,所以=a1a13,所以(1+2d)2=1+12d,d0,解得d=2.可得an=2n-1,Sn=n2,则=n+2+-44,当且仅当n=2时,等号成立.答案:4三、解答题(每小题10分,共20分)9.(2019全国卷)已知数列an和bn满足a1=1,b1=0,4an+1=3an-bn+4,4bn+1=3bn-an-4.(1)证明:an+bn是等比数列,an-bn是等差数列.(2)求an和bn的通项公式.【解析】(1)由题设得4(an+1+bn+1)=2(an+bn),即an+1+bn+1=(an+bn).又因为a1+b1=1,所以是首项为1,公比为的等比数列.由题设得4(an+1-bn+1)=4(an-bn)+8,即an+1-bn+1=an-bn+2.又因为a1-b1=1,所以是首项为1,公差为2的等差数列.(2)由(1)知,an+bn=,an-bn=2n-1.所以an=(an+bn)+(an-bn)=+n-,bn=(an+bn)-(an-bn)=-n+.10.已知等差数列an前三项的和为-3,前三项的积为8.(1)求数列an的通项公式.(2)若a2,a3,a1成等比数列,求数列|an|的前n项和Sn.【解析】(1)设等差数列an的公差为d,则a2=a1+d,a3=a1+2d.由题意得解得或所以由等差数列通项公式可得an=2-3(n-1)=-3n+5或an=-4+3(n-1)=3n-7.故an=-3n+5或an=3n-7.(2)当an=-3n+5时,a2,a3,a1分别为-1,-4,2,不成等比数列;当an=3n-7时,a2,a3,a1分别为-1,2,-4,成等比数列,满足条件.故|an|=|3n-7|=记数列|an|的前n项和为Sn.当n=1时,S1=|a1|

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论