2012北京绝密高考:海淀+东城+西城(理科).doc_第1页
2012北京绝密高考:海淀+东城+西城(理科).doc_第2页
2012北京绝密高考:海淀+东城+西城(理科).doc_第3页
2012北京绝密高考:海淀+东城+西城(理科).doc_第4页
2012北京绝密高考:海淀+东城+西城(理科).doc_第5页
已阅读5页,还剩31页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2012年北京海淀高三数学一模试题(理科)海淀区高三年级第二学期期中练习 数 学(理科)2012.04一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合,且,那么的值可以是 (A) (B) (C) (D)(2)在等比数列中,则=(A)(B) (C) (D)(3)在极坐标系中,过点且平行于极轴的直线的极坐标方程是(A) (B)开始n=5,k=0n为偶数n=1输出k结束k=k+1是否是否(C) (D)(4)已知向量,若与垂直,则(A) (B) (C)2 (D)4(5)执行如图所示的程序框图,输出的值是(A)4 (B)5 (C)6 (D)7 (6)从甲、乙等5个人中选出3人排成一列,则甲不在排头的排法种数是 (A)12 (B)24 (C)36 (D)48(7)已知函数 若,使得成立,则实数的取值范围是 (A) (B) (C) (D)或(8)在正方体中,若点(异于点)是棱上一点,则满足与所成的角为的点的个数为 (A)0 (B)3 (C)4 (D)6二、填空题:本大题共6小题,每小题5分,共30分,把答案填在题中横线上.(9)复数在复平面内所对应的点在虚轴上,那么实数= . (10)过双曲线的右焦点,且平行于经过一、三象限的渐近线的直线方程是 . (11)若,则= . (12)设某商品的需求函数为,其中分别表示需求量和价格,如果商品需求弹性大于1(其中,是的导数),则商品价格的取值范围是 . (13)如图,以的边为直径的半圆交于点,交于点,于点,那么= ,= . (14)已知函数则()= ;()给出下列三个命题:函数是偶函数;存在,使得以点为顶点的三角形是等腰直角三角形;存在,使得以点为顶点的四边形为菱形. 其中,所有真命题的序号是 . 三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.(15)(本小题满分13分)在中,角,的对边分别为,且, 成等差数列.()若,求的值;()设,求的最大值. (16)(本小题满分14分)在四棱锥中,/,平面,. ()设平面平面,求证:/; ()求证:平面;()设点为线段上一点,且直线与平面所成角的正弦值为,求的值 (17)(本小题满分13分)某学校随机抽取部分新生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是,样本数据分组为,.()求直方图中的值;()如果上学所需时间不少于1小时的学生可申请在学校住宿,请估计学校600名新生中有多少名学生可以申请住宿;()从学校的新生中任选4名学生,这4名学生中上学所需时间少于20分钟的人数记为,求的分布列和数学期望.(以直方图中新生上学所需时间少于20分钟的频率作为每名学生上学所需时间少于20分钟的概率)(18)(本小题满分13分)已知函数.()求的单调区间;()是否存在实数,使得函数的极大值等于?若存在,求出的值;若不存在,请说明理由.(19)(本小题满分13分)在平面直角坐标系中,椭圆的中心为坐标原点,左焦点为, 为椭圆的上顶点,且.()求椭圆的标准方程;()已知直线:与椭圆交于,两点,直线:()与椭圆交于,两点,且,如图所示.()证明:;()求四边形的面积的最大值. (20)(本小题满分14分)对于集合M,定义函数对于两个集合M,N,定义集合. 已知,.()写出和的值,并用列举法写出集合;()用Card(M)表示有限集合M所含元素的个数,求的最小值;()有多少个集合对(P,Q),满足,且? 海淀区高三年级第二学期期中练习数 学(理科)参考答案及评分标准 201204一. 选择题:本大题共8小题,每小题5分,共40分.题号(1)(2)(3)(4)(5)(6)(7)(8)答案DBACBD AB二.填空题:本大题共6小题,每小题5分,共30分.(9) (10) (11) (12) (13)60 (14) 三.解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.(15)(本小题满分13分)解:()因为成等差数列, 所以. 因为, 所以. 2分 因为, 所以. 5分所以或(舍去). 6分 ()因为,所以 . 10分 因为, 所以. 所以当,即时,有最大值.13分 (16)(本小题满分14分)()证明: 因为/,平面,平面,所以/平面. 2分因为平面,平面平面,所以/. 4分()证明:因为平面,所以以为坐标原点,所在的直线分别为轴、轴、轴建立空间直角坐标系,则,. 5分所以 ,所以,.所以 ,. 因为 ,平面,平面,所以 平面. 9分()解:设(其中),直线与平面所成角为.所以 .所以 .所以 即. 所以 . 11分由()知平面的一个法向量为.12分因为 ,所以 .解得 .所以 . 14分(17)(本小题满分13分)解:()由直方图可得:.所以 . 2分()新生上学所需时间不少于1小时的频率为:, 4分因为,所以600名新生中有72名学生可以申请住宿. 6分()的可能取值为0,1,2,3,4. 7分由直方图可知,每位学生上学所需时间少于20分钟的概率为,, ,. 所以的分布列为:0123412分.(或)所以的数学期望为1. 13分 (18)(本小题满分13分)解:()的定义域为. ,即 . 2分令,解得:或. 当时,故的单调递增区间是. 3分当时,随的变化情况如下:极大值极小值所以,函数的单调递增区间是和,单调递减区间是.5分当时,随的变化情况如下:极大值极小值所以,函数的单调递增区间是和,单调递减区间是.7分()当时,的极大值等于. 理由如下: 当时,无极大值.当时,的极大值为, 8分令,即 解得 或(舍). 9分 当时,的极大值为. 10分因为 , 所以 .因为 ,所以 的极大值不可能等于. 12分综上所述,当时,的极大值等于.13分 (19)(本小题满分13分)()解:设椭圆的标准方程为. 因为,所以.所以 . 2分所以 椭圆的标准方程为. 3分()设,.()证明:由消去得:.则, 5分所以 .同理 . 7分因为 ,所以 .因为 ,所以 . 9分()解:由题意得四边形是平行四边形,设两平行线间的距离为,则 .因为 ,所以 . 10分所以 .(或)所以 当时, 四边形的面积取得最大值为. 13分 (20)(本小题满分14分)解:(),. 3分()根据题意可知:对于集合,若且,则;若且,则.所以 要使的值最小,2,4,8一定属于集合;1,6,10,16是否属于不影响的值;集合不能含有之外的元素.所以 当为集合1,6,10,16的子集与集合2,4,8的并集时,取到最小值4. 8分()因为 ,所以 .由定义可知:.所以 对任意元素, .所以 .所以 . 由 知:.所以 .所以 .所以 ,即.因为 ,所以 满足题意的集合对(P,Q)的个数为.14分北京市东城区2011-2012学年第二学期综合练习(一)高三数学(理科)学校_班级_姓名_考号_本试卷分第卷和第卷两部分,第卷1至2页,第卷3至5页,共150分。考试时长120分钟。考生务必将答案答在答题卡上,在试卷上作答无效。考试结束后,将本试卷和答题卡一并交回。第卷(选择题 共40分)一、本大题共8小题,每小题5分,共40分。在每小题列出的四个选项中,选出符合题目要求的一项。(1)若,是虚数单位,且,则的值为 (A) (B) (C) (D)(2)若集合,则“”是“”的 (A)充分不必要条件 (B)必要不充分条件 (C)充分必要条件 (D)既不充分也不必要条件 (3)若实数,满足不等式组则的最小值为 (A) (B) (C) (D) (4)右图给出的是计算的值的一个程序框图, 其中判断框内应填入的条件是 (A) (B) (C) (D) (5)某小区有排成一排的个车位,现有辆不同型号的车需要停放,如果要求剩余的个车位连在一起, 那么不同的停放方法的种数为(A)16(B)18(C)24(D)32(6)已知,若,成等比数列,则的值为 C (A)(B)(C)(D)(7)在直角梯形中,已知,若为的中点,则的值为 (A) (B) (C) (D)(8)已知函数若方程有且只有两个不相等的实数根,则实数的取值范围是(A) (B) (C) (D)第卷(共110分)二、填空题:本大题共6小题,每小题5分,共30分。(9)命题“”的否定是 .(10)在极坐标系中,圆的圆心到直线的距离为 (11)在如图所示的茎叶图中,乙组数据的中位数是 ;若从甲、乙两组数据中分别去掉一个最大数和一个最小数后,两组数据的平均数中较大的一组是 组(12)如图,是的直径,直线切于点,且与延长线交于点,若,则= (13)抛物线的准线方程为 ;此抛物线的焦点是,则经过和点 ,且与准线相切的圆共有 个(14)如图,在边长为的正方形中,点在上,正方形以为轴逆时针旋转角到的位置 ,同时点沿着从点运动点,点在上,在运动过程中点始终满足,记点在面上的射影为,则在运动过程中向量与夹角的正切值的最大值为 .三、解答题:本大题共6小题,共80分。解答应写出文字说明,演算步骤或证明过程。(15)(本小题共13分) 已知函数.()求的最小正周期;()若函数的图象是由的图象向右平移个单位长度,再向上平移1个单位长度得到的,当,时,求的最大值和最小值. (16)(本小题共13分) 某工厂生产甲、乙两种产品,甲产品的一等品率为,二等品率为;乙产品的一等品率为,二等品率为.生产件甲产品,若是一等品,则获利万元,若是二等品,则亏损万元;生产件乙产品,若是一等品,则获利万元,若是二等品,则亏损万元.两种产品生产的质量相互独立.()设生产件甲产品和件乙产品可获得的总利润为(单位:万元),求的分布列;()求生产件甲产品所获得的利润不少于万元的概率.(17)(本小题共13分)如图1,在边长为的正三角形中,分别为,上的点,且满足.将沿折起到的位置,使二面角成直二面角,连结,.(如图2)()求证:平面;()求直线与平面所成角的大小. 图1 图2 (18)(本小题共14分)已知函数在处的切线斜率为零()求和的值;()求证:在定义域内恒成立;() 若函数有最小值,且,求实数的取值范围.(19)(本小题共13分)已知椭圆:的左、右顶点分别为,为短轴的端点,的面积为,离心率是()求椭圆的方程;()若点是椭圆上异于,的任意一点,直线,与直线分别交于,两点,证明:以为直径的圆与直线相切于点 (为椭圆的右焦点)(20)(本小题共14分)若对于正整数,表示的最大奇数因数,例如,.设 ()求,的值;()求,的值;()求数列的通项公式北京市东城区2011-2012学年第二学期综合练习(一)高三数学参考答案及评分标准(理科)一、选择题(本大题共8小题,每小题5分,共40分)(1)D (2)A (3)A (4)B(5)C (6)C (7)D (8)A二、填空题(本大题共6小题,每小题5分,共30分)(9) (10) (11)84 乙(12) (13) (14)注:两个空的填空题第一个空填对得2分,第二个空填对得3分三、解答题(本大题共6小题,共80分)(15)(共13分)解:()因为 , 6分所以函数的最小正周期为. 8分 ()依题意, . 10分 因为,所以. 11分 当,即时,取最大值;当,即时, 取最小值. 13分 (16)(共13分)解:()由题设知,的可能取值为,. 2分 , , , . 6分 由此得的分布列为: 8分()设生产的件甲产品中一等品有件,则二等品有件. 由题设知,解得,又,得,或. 10分所求概率为.(或写成)答:生产件甲产品所获得的利润不少于万元的概率为. 13分(17)(共13分)()证明:取中点,连结.因为,所以,而,即是正三角形.又因为, 所以. 2分所以在图2中有,.3分所以为二面角的平面角. 图1又二面角为直二面角,所以. 5分又因为,所以平面,即平面. 6分()解:由()可知平面,如图,以为原点,建立空间直角坐标系,则,.在图中,连结.因为,所以,且.所以四边形为平行四边形.所以,且.故点的坐标为(1,0). 图2所以, ,. 8分不妨设平面的法向量,则即令,得. 10分所以. 12分故直线与平面所成角的大小为. 13分 (18)(共14分)()解:. 2分由题意有即,解得或(舍去)4分得即,解得 5分()证明:由()知, 在区间上,有;在区间上,有 故在单调递减,在单调递增,于是函数在上的最小值是 9分故当时,有恒成立 10分()解: 当时,则,当且仅当时等号成立,故的最小值,符合题意; 13分当时,函数在区间上是增函数,不存在最小值,不合题意;当时,函数在区间上是增函数,不存在最小值,不合题意综上,实数的取值范围 14分(19)(共13分)()解:由已知 2分 解得, 4分 故所求椭圆方程为 5分()证明:由()知,设椭圆右焦点设,则 于是直线方程为 ,令,得;所以,同理 7分 所以,. 所以 所以 ,点在以为直径的圆上 9分 设的中点为,则 10分又,所以 所以 12分因为是以为直径的圆的半径,为圆心,故以为直径的圆与直线相切于右焦点 13分(20)(共14分)解:(), 2分(); ; 6分()由()()不难发现对,有 8分 所以当时, 11分于是,所以 , 13分 又,满足上式, 所以对, 14分北京市西城区2012年高三一模试卷 数 学(理科) 2012.4第卷(选择题 共40分)一、选择题共8小题,每小题5分,共40分. 在每小题列出的四个选项中,选出符合题目要求的一项.1已知全集,集合,则( )(A)(B)(C)(D)2执行如图所示的程序框图,若输入,则输出的值为( )(A)(B)(C)(D)3若实数,满足条件则的最大值为( )(A)(B)(C)(D)4已知正六棱柱的底面边长和侧棱长相等,体积为其三视图中的俯视图如图所示,则其左视图的面积是( )(A)(B)(C)(D)5已知函数的最小正周期是,那么正数( )(A)(B)(C)(D)6若,则下列结论正确的是( )(A)(B) (C)(D)7设等比数列的各项均为正数,公比为,前项和为若对,有,则的取值范围是( )(A)(B)(C)(D)8已知集合,其中,且.则中所有元素之和等于( )(A)(B)(C)(D)第卷(非选择题 共110分)二、填空题共6小题,每小题5分,共30分.9. 某年级名学生在一次百米测试中,成绩全部介于秒与秒之间将测试结果分成组:,得到如图所示的频率分 布直方图如果从左到右的个小矩形的面积之比为,那么成绩在的学生人数是_10的展开式中,的系数是_(用数字作答)11. 如图,为的直径,弦交于点若,则_ 12. 在极坐标系中,极点到直线的距离是_13. 已知函数 其中那么的零点是_;若的值域是,则的取值范围是_14. 在直角坐标系中,动点,分别在射线和上运动,且的面积为则点,的横坐标之积为_;周长的最小值是_三、解答题共6小题,共80分. 解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)在中,已知()求角; ()若,求16.(本小题满分13分)乒乓球单打比赛在甲、乙两名运动员间进行,比赛采用局胜制(即先胜局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同.()求甲以比获胜的概率;()求乙获胜且比赛局数多于局的概率;()求比赛局数的分布列.17(本小题满分14分)如图,四边形与均为菱形, ,且()求证:平面;()求证:平面;()求二面角的余弦值 18.(本小题满分13分)已知函数,其中.()当时,求曲线在点处的切线方程;()求的单调区间.19.(本小题满分14分)已知椭圆的离心率为,定点,椭圆短轴的端点是,且.()求椭圆的方程;()设过点且斜率不为的直线交椭圆于,两点.试问轴上是否存在定点,使平分?若存在,求出点的坐标;若不存在,说明理由. 20.(本小题满分13分)对于数列,定义“变换”:将数列变换成数列,其中,且,这种“变换”记作.继续对数列进行“变换”,得到数列,依此类推,当得到的数列各项均为时变换结束()试问和经过不断的“变换”能否结束?若能,请依次写出经过“变换”得到的各数列;若不能,说明理由;()求经过有限次“变换”后能够结束的充要条件; ()证明:一定能经过有限次“变换”后结束北京市西城区2012年高三一模试卷 数学(理科)参考答案及评分标准 2012.4一、选择题:本大题共8小题,每小题5分,共40分.1. C; 2. D; 3. A; 4.A; 5. B; 6. D; 7. A; 8. D .二、填空题:本大题共6小题,每小题5分,共30分. 9.; 10.; 11.; 12.; 13.和,; 14.,.注:13题、14题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分. 15.(本小题满分13分) ()解:原式可化为 3分 因为, 所以 , 所以 5分 因为, 所以 6分 ()解:由余弦定理,得 8分 因为 , 所以 10分 因为 , 12分所以 13分16.(本小题满分13分)()解:由已知,甲、乙两名运动员在每一局比赛中获胜的概率都是 1分记“甲以比获胜”为事件,则 4分()解:记“乙获胜且比赛局数多于局”为事件. 因为,乙以比获胜的概率为, 6分 乙以比获胜的概率为, 7分所以 8分()解:设比赛的局数为,则的可能取值为 , 9分 , 10分 , 11分 12分比赛局数的分布列为: 13分17.(本小题满分14分)()证明:设与相交于点,连结因为 四边形为菱形,所以,且为中点 1分又 ,所以 3分因为 , 所以 平面 4分 ()证明:因为四边形与均为菱形,所以/,/, 所以 平面/平面 7分 又平面,所以/ 平面 8分 ()解:因为四边形为菱形,且,所以为等边三角形因为为中点,所以,故平面由两两垂直,建立如图所示的空间直角坐标系 9分 设因为四边形为菱形,则,所以,所以 所以 , 设平面的法向量为,则有所以 取,得 12分 易知平面的法向量为 13分 由二面角是锐角,得 所以二面角的余弦值为 14分18.(本小题满分13分)()解:当时, 2分由于,所以曲线在点处的切线方程是 4分()解:, 6分 当时,令,解得 的单调递减区间为;单调递增区间为,8分当时,令,解得 ,或 当时,的单调递减区间为,;单调递增区间为, 10分 当时,为常值函数,不存在单调区间 11分 当时,的单调递减区间为,;单调递增区间为, 13分19.(本小题满分14分)()解:由 , 得 . 2分依题意是等腰直角三角形,从而,故. 4分所以椭圆的方程是. 5分()解:设,直线的方程为. 将直线的方程与椭圆的方程联立,消去得 . 7分所以 ,. 8分若平分,则直线,的倾斜角互补,所以. 9分设,则有 .将 ,代入上式

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论