已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.2 独立性检验的基本思想及其初步应用知识点分类变量及22列联表1分类变量变量的不同“值”表示个体所属的不同类别,像这样的变量称为分类变量2列联表(1)定义:列出的两个分类变量的频数表,称为列联表(2)22列联表一般地,假设有两个分类变量X和Y,它们的取值分别为x1,x2和y1,y2,其样本频数列联表(也称为22列联表)为下表y1y2总计x1ababx2cdcd总计acbdabcd知识点等高条形图(1)等高条形图与表格相比,更能直观地反映出两个分类变量间是否相互影响,常用等高条形图展示列联表数据的频率特征(2)观察等高条形图发现和相差很大,就判断两个分类变量之间有关系知识点独立性检验1列联表与等高条形图列联表由两个分类变量之间频率大小差异说明这两个变量之间是否有关联关系,而利用等高条形图能形象直观地反映它们之间的差异,进而推断它们之间是否具有关联关系2对独立性检验思想的理解独立性检验的基本思想类似于数学中的反证法先假设“两个分类变量没有关系”成立,计算随机变量K2的值,如果K2的值很大,说明假设不合理K2越大,两个分类变量有关系的可能性越大1判一判(正确的打“”,错误的打“”)(1)分类变量中的变量与函数中的变量是同一概念()(2)列联表频率分析法、等高条形图可初步分析两分类变量是否有关系,而独立性检验中K2取值则可通过统计表从数据上说明两分类变量的相关性的大小()(3)独立性检验的方法就是反证法()答案(1)(2)(3)2做一做(1)为了调查高中生的性别与是否喜欢踢足球之间有无关系,一般需要收集以下数据_(2)若观测值k7.8,得到的正确结论是在犯错误的概率不超过_的前提下认为“爱好该项运动与性别有关”(3)独立性检验中,假设H0:变量x与变量y没有关系则在H0成立的情况下,估计概率P(K26.635)0.01表示的意义是变量x与变量y_(填“有关系”或“无关系”)的概率是99%.答案(1)男女生中喜欢和不喜欢踢足球的人数(2)1%(3)有关系解析(1)为了调查高中生的性别与是否喜欢踢足球之间有无关系,一般需要收集男女生中喜欢和不喜欢踢足球的人数,再得出22列联表,最后代入随机变量的观测值公式,得出结果(2)因为7.86.635,所以这个结论有0.011%的机会说错,在犯错误的概率不超过1%的前提下认为“爱好该项运动与性别有关”(3)因为概率P(K26.635)0.01,所以两个变量有关系的可信度是10.0199%,即两个变量有关系的概率是99%.探究独立性检验的基本思想例1在吸烟与患肺病这两个分类变量中,下列说法正确的是()A若K2的观测值k6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99个人患有肺病B从独立性检验可知有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病C若从统计量中求出有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误D以上三种说法都不正确解析独立性检验的结果是一种相关关系,不是确定性关系,反映的是有关或无关的概率的大小,故A错误,B错误,C正确答案选C.答案C拓展提升本例考查独立性检验的基本思想,相关性检验的结果是一种相关关系,而不是确定性关系,是反映有关和无关的概率本题考查学生对基本知识的理解给出下列实际问题,其中不可以用独立性检验解决的是 ()A喜欢参加体育锻炼与性别是否有关B喝酒者得胃病的概率C喜欢喝酒与性别是否有关D青少年犯罪与上网成瘾是否有关答案B解析独立性检验主要是对两个分类变量是否有关进行检验,故不可用独立性检验解决的问题是B.故选B.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:男女总计爱好4020 60不爱好2030 50总计6050110由K2算得,K27.8.附表:P(K2k0)0.0500.010 0.001k03.8416.63510.828参照附表,得到的正确结论是()A在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C有99%以上的把握认为“爱好该项运动与性别有关”D有99%以上的把握认为“爱好该项运动与性别无关”答案C解析根据独立性检验的定义,由k27.86.635可知在犯错误的概率不超过0.01的前提下,认为“爱好该项运动与性别有关”,即有99%以上的把握认为“爱好该项运动与性别有关”故选C.探究用等高条形图判断两个变量是否相关例2为考察某种药物预防疾病的效果进行动物试验,得到如下列联表:药物效果试验列联表患病未患病总计服用药104555未服用药203050总计3075105试用等高条形图分析服用药和患病之间是否有关系解根据列联表所给的数据可得出服用药患病的频率为0.18,未服用药患病的频率为0.4,两者的差距是|0.180.4|0.22,两者相差很大,作出等高条形图如图所示,因此服用药与患病之间有关系的程度很大拓展提升应用等高条形图判断两变量是否相关的方法在等高条形图中,可以估计满足条件Xx1的个体中具有Yy1的个体所占的比例,也可以估计满足条件Xx2的个体中具有Yy1的个体所占的比例.“两个比例的值相差越大,H1成立的可能性就越大”某学校对高三学生作了一项调查发现:在平时的模拟考试中,性格内向的学生426人中有332人在考前心情紧张,性格外向的学生594人中有213人在考前心情紧张,作出等高条形图,利用图形判断考前心情紧张与性格类型是否有关系解作列联表如下:性格内向性格外向总计考前心情紧张332213545考前心情不紧张94381475总计4265941020相应的等高条形图如图所示:图中阴影部分表示考前心情紧张与考前心情不紧张中性格内向的人数的比例,从图中可以看出考前心情紧张的样本中性格内向的人数占的比例比考前心情不紧张样本中性格内向的人数占的比例高,可以认为考前紧张与性格类型有关探究由K2进行独立性检验例3某校对学生课外活动进行调查,结果整理成下表:体育文娱合计男生212344女生62935合计275279试用你所学过的知识进行分析,能否在犯错误的概率不超过0.005的前提下,认为“喜欢体育还是文娱与性别有关系”?解其等高条形图如图所示由图可以直观地看出喜欢体育还是喜欢文娱与性别在某种程度上有关系,但只能作粗略判断,具体判断方法如下:假设“喜欢体育还是喜欢文娱与性别没有关系”,a21,b23,c6,d29,n79.K28.106.且P(K27.879)0.005,即我们得到的K2的观测值k8.106,超过7.879,这就意味着:“喜欢体育还是文娱与性别没有关系”这一结论成立的可能性小于0.005,即在犯错误的概率不超过0.005的前提下认为“喜欢体育还是喜欢文娱与性别有关”拓展提升独立性检验的具体做法(1)根据实际问题的需要确定允许推断“两个分类变量有关系”犯错误的概率的上界,然后查表确定临界值k0.(2)利用公式K2计算随机变量K2的观测值k.(3)如果kk0,推断“X与Y有关系”这种推断犯错误的概率不超过;否则,就认为在犯错误的概率不超过的前提下不能推断“X与Y有关系”,或者在样本数据中没有发现足够的证据支持结论“X与Y有关系”某地区甲校高二年级有1100人,乙校高二年级有900人,为了统计两个学校高二年级在学业水平考试中的数学学科成绩,采用分层抽样的方法在两校共抽取了200名学生的数学成绩,如下表:(已知本次测试合格线是50分,两校合格率均为100%)甲校高二年级数学成绩:分组50,60)60,70)70,80)80,90)90,100频数10253530x乙校高二年级数学成绩:分组50,60)60,70)70,80)80,90)90,100频数153025y5(1)计算x,y的值,并分别估计以上两所学校数学成绩的平均分(精确到1分);(2)若数学成绩不低于80分为优秀,低于80分为非优秀,根据以上统计数据填写下面22列联表,并回答能否在犯错误的概率不超过0.05的前提下认为“两个学校的数学成绩有差异?”甲校乙校总计优秀非优秀总计解(1)依题意知甲校应抽取110人,乙校应抽取90人,x10,y15,估计两个学校的平均分,甲校的平均分为75.乙校的平均分为71.(2)数学成绩不低于80分为优秀,低于80分为非优秀,得到列联表甲校乙校总计优秀402060非优秀7070140总计11090200k4.174,又因为4.1743.841,故能在犯错误的概率不超过0.05的前提下认为“两个学校的数学成绩有差异”1.独立性检验是数理统计的一种方法,是数学中的一种基本理论,是数学体系中对数据关系进行探索的一种基本思想判断两个分类变量是否相关可以通过等高条形图进行粗略判断,也可以通过独立性检验来考察两个分类变量是否有关系,利用公式K2计算出随机变量K2的观测值k,通过查表确定临界值k0.若kk0说明X与Y有关系,否则是没有关系.2.解决一般的独立性检验问题的步骤(1)通过列联表确定a,b,c,d,n的值,根据实际问题需要的可信程度确定临界值k0;(2)利用K2求出K2的观测值k;(3)如果kk0,就推断“两个分类变量有关系”,这种推断犯错误的概率不超过,否则就认为在犯错误的概率不超过的前提下不能推断“两个分类变量有关系”.其中第(2)步易算错K2的值,是本节课的易错点.1在独立性检验中,假设H0:变量x与变量y没有关系,则在H0成立的情况下,P(K26.635)0.01表示 ()A变量x与变量y有关系的概率是1%B变量x与变量y有关系的概率是99%C变量x与变量y没有关系的概率是0.1%D变量x与变量y没有关系的概率是99.9%答案B解析因为P(K26.635)0.01,所以两个变量有关系的可信度是99%,即两个变量有关系的概率是99%.故选B.2某工厂为了调查工人文化程度与月收入的关系,随机抽取了部分工人,得到如下列联表:文化程度与月收入列联表(单位:人)由上表中数据计算得K2的观测值k6.109,请估计有多大把握认为“文化程度与月收入有关系”()A1%B99%C2.5%D97.5%答案D解析由于6.1095.024,故在犯错误的概率不超过0.025的前提下,即有97.5%的把握认为“文化程度与月收入有关系”3如图是某地区男女中学生是否喜欢理科的等高条形图,从图中可以看出 ()A是否喜欢理科与性别无关B女生中喜欢理科的百分比约为80%C男生比女生喜欢理科的可能性大D男生中不喜欢理科的百分比约为60%答案C解析由等高条形图,可知女生中喜欢理科的百分比约为10.80.220%,男生中喜欢理科的百分比约为10.40.660%,因此男生比女生喜欢理科的可能性大故选C.4为了解某班学生喜爱打篮球是否与性别有关,对该班50名学生进行了问卷调查,得到了如下的22列联表:喜爱打篮球不喜爱打篮球总计男生20525女生101525总计302050则在犯错误的概率不超过_的前提下认为喜爱打篮球与性别有关(请用百分数表示)答案0.5%解析K28.3337.879,所以在犯错误的概率不超过0.005的前提下认为喜爱打篮球与性别有关5吃零食是在中学生中普遍存在的现象,吃零
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年江苏省扬州市单招职业倾向性测试必刷测试卷附答案
- 2026年泰山职业技术学院单招职业技能测试题库附答案
- 中职学前教育教师资格证模拟
- 为国争光做工匠教案
- 价值澄清模式的教案
- 儿童故事在森林里教案
- 动物的睡觉姿势教案
- 周末公园玩耍音乐教案
- 垂直领域能拍照吗教案
- 天空为何会下雨教案
- 术前讨论制度(2025年版)
- 2025年广东深圳高中中考自主招生数学试卷试题(含答案详解)
- 2025-2030中国工业自动化设备产业发展现状及未来趋势分析报告
- 板式换热器清洗施工方案
- 国际会计学教学大纲
- 造影剂过敏反应护理
- 消毒供应中心不良事件案例
- 注塑车间生产月度工作总结
- 国开2025年《畜产品加工技术》形考作业1-4答案
- 2025至2030中国差压表行业产业运行态势及投资规划深度研究报告
- 金融信息安全培训课件
评论
0/150
提交评论