




免费预览已结束,剩余5页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
实验报告实 验 题 目: MATLAB软件与高等数学上机实验实验问题1:每门课程考试阅卷完毕,任课教师都要对各班的考试成绩进行统计,统计内容包括:全班人数,总得分,平均得分,不及格的人数及90分(包括90分)以上的人数.请编制程序解决这一问题,并自给一组数据验证程序的正确性.要求:使用者在提示下通过键盘输入学生成绩,计算机自动处理后,显示需要的结果.1问题分析: 要求得出一组成绩的人数、总分、平均分、不及格人数、优秀人数。通过数组模长length得出人数,由求和sum得到总分,除以总人数就得到平均分。通过循环,条件语句判断出不及格和优秀的人数。2程序设计:a=input(chengji an= ); %输入变量n=length(a); %计算人数y=sum(a); %求和计算总分z=y./n; %计算平均分k=0;s=0; %初值for i=1:n %步长为一 if a(i)=90 s=s+1; %统计优秀人数 endendfprintf(total=%.0f average=%.3f failures=%.0f winners=%.0fn,y,z,k,s);3举例运行结果如下: 4,问题拓展:可以统计不同分数段的人数,可以转化成等级的形式。实验问题2:求,中同时满足下列条件的数()该数各位数字之和为奇数()该数是素数问题分析该题涉及了素数、各位数字之和的求法,以及如何判断某数为奇数的方法。首先,建立循环,创建2到999的数列,作为判断的基础。在判断是否为素数的环节中,使用isprime的函数,直接求出了素数。接着,是如何求个位数字之和的问题。其中,使用了mod函数和floor函数,mod函数所求的是余数,floor函数所求的是不小于出除数的最小整数。判断是否为奇数时,若该数可被2整除,则判断为奇数。for x=2:999; 分析:定义循环变量,从2到999,以1为步长。if(isprime(x)=1&mod(mod(x,10)+floor(mod(x,100)./10)+floor(x./100),2)=1)分析:判断环节。isprime(x)=1判断x是否为素数; mod(x,10)即求x在个位上的数字;floor(mod(x,100)./10即求x在十位上的数字;floor(x./100)即求x在百位上的数字。fprintf( a=%.0fn,x);分析:输出数据。endend程序设计问题求解结果与结论 结论:从2到999各位数字之和为奇数且是素数的数有3、5、7、23、29、41 、43 、47 、61 、67 、83 、89 、113 、131 、137 、139 、151 、157 、173 、179 、191 、193、197、199、223 、227 、229 、241 、263、269 、281 、283、311 、313 、317、331、337 、353、359、373、379 、397 、401 、409 、421、443 、449、461 、463 、467、487 、557 、571 、577 、593 、599、601、607 、641 、643、647 、661 、683 、719 、733、739 、751 、757 、773、797、809 、821、823、827 、829、863、881 、883 、887 、911 、919 、937 、953、971、977、991、997。4,问题拓展:若题目为任意数判断其是否为素数且个位数字之和为奇数,则问题需要建立判断程序,再输入任意数后进行判断。此外,此题的解法应用了MATLAB中的已有的判断是否为素数的程序,如果不应用此程序,应如何判断是否为素数。实验问题3:在一边长为一的正方形跑道的四个顶点上个站有一人,他们同时开始以等速顺时针沿跑道水下一个人,在追击过程中,每个人时刻对准目标,是模拟追击路线。并讨论:(1) 四个人能否追到一起?(2) 若能追到一起,则每个人跑过的路程?(3) 追到一起所需要的时间(设速率为1)?如果四个人追逐的速度不一样,情况又如何?1、问题分析由问题一可知对于只以直线匀速运动的物体为目标进行追击的问题用解析的方法进行求解已经相当复杂而此题中涉及到目标物体的速度方向的变化且追击目标与追击者是相互影响的,故采用计算机仿真法进行求解。2、规定和假设首先我们做出以下定义以方便模型建立过程中对一些问题的解释:、将四个人分别编上号为1、2、3、4,且规定第一个人首先跑然后几乎同时的引起其他人进行追击,进行模拟。、我们定义追击者的象限,即以追击者所追击的人的起始位置为原点,从原点到追击者的起始位置为x轴且为正方向,建立坐标系,称该坐标系的第一象限为该追击者的象限。如若规定图中左下角的追击者为1号,逆时针依次编号为2、3、4。则以2号所在正方形的角为原点,从2号到1号的正方形的边为x轴,且方向为正,所建立起来的坐标系的第一象限为第一个追击者的象限(或称为1号的象限)。2、3、4号的象限可按照此法依次定义。、设1、2、3、4号在其本象限内的坐标分别为(1x,r=1y)、(2x,2y)、(3x,3y)、(4x,4y),在其下一个象限内的坐标为(x,y),在2号的象限内的坐标为(xb,yb)。、考虑到实际情况我们仅画出正方形边长为200米,追击者速度为3m/s时的图,且时间限制为6分钟。(由于普通人自由跑步的速度一般为37m/s,我们在此只考虑3m/s的情况,但是只要将程序第一行的c和a的值加以修改就可以得到不同边长和不同速度的图像。) 图一3模型的建立我们以2号的象限为作图区,如图一所示笑脸图案代表时刻t时1号的位置,菱形代表t时刻时2号的位置在2号的象限内对于1号来说:x=1y;y=200-1x;对于2号来说:2x=2x+2y=2y+在3号的象限内对于2号来说:x=2y;y=200-2x;对于3号来说:3x=3x+3y=3y+在4号的象限内对于3号来说:x=3y;y=200-3x;对于4号来说:4x=4x+4y=4y+在1号的象限内对于4号来说:x=4y;y=200-4x;对于1号来说:1x=1x+1y=1y+而又由于我们所画的为在2号的限内的图所以画图时必须将1、3、4号的坐标分别转化到2号的象限中去即:1号 xb=1y,yb=200-1x; 3号 xb=200-3y,yb=3x; 4号 xb=200-4y,yb=200-4x。从而整个模型建立起来。4、程序及结果c=200; a=3;1xb=;2xb=;3xb=;4xb=;1yb=;2yb=;3yb=;4yb=;d=0.01;dt=0.005;t=0;1x=c;2x=c;3x=c;4x=c;1y=0;2y=0;3y=0;4y=0;s=a*dt;while(sqrt(1y-2x)2+(200-1x-2y)2)d)&(t=360) xb=1y; %其中xb,yb表示此时该人% yb=200-1x;%在显示图像的象限(第二个人的象限)里的坐标值% 1xb=1xb,xb; 1yb=1yb,yb; y=200-1x; %以下四行是为了将1x,1y转换成在2号的象限中的坐标值% x=1y; 1x=x; 1y=y; 2x=2x+a*dt*(1x-2x)/sqrt(1x-2x)2+(a*dt+1y-2y)2); 2y=2y+a*dt*(1y-2y)/sqrt(1x-2x)2+(1y-2y)2); 1x=200-y; %此时又将1x,1y转化为第一个人在其本象限内的坐标值% 1y=x; %以保证下次计算其坐标值时的正确性% xb=2x; %其中xb,yb表示此时该人% yb=2y; %在显示图像的象限(2号的象限)里的坐标值% 2xb=2xb,xb; 2yb=2yb,yb; yy=200-2x; %以下四行是为了将rrx,rry转换成在3号的象限中的坐标值% xx=2y; 2x=xx; 2y=yy; 3x=3x+a*dt*(2x-3x)/sqrt(3x-2x)2+(3y-2y)2); 3y=3y+a*dt*(2y-3y)/sqrt(3x-2x)2+(3y-2y)2); 2x=200-yy; 2y=xx; xb=200-3y; %其中xb,yb表示此时该人% yb=3x; %在显示图像的象限(2号的象限)里的坐标值% 3xb=3xb,xb; 3yb=3yb,yb; xxx=3y; %以下四行是为了将3x,3y转换成在4号的象限中的坐标值% yyy=200-3x; 3x=xxx; 3y=yyy; 4x=4x+a*dt*(3x-4x)/sqrt(4x-3x)2+(4y-3y)2); 4y=4y+a*dt*(3y-4y)/sqrt(4x-3x)2+(4y-3y)2); 3x=200-yyy; 3y=xxx; xb=200-4x; %其中xb,yb表示此时该人% yb=200-4y; %在显示图像的象限(2号的象限)里的坐标值% 4xb=4xb,xb; 4yb=4yb,yb; xxxx=4y; yyyy=200-4x; 4x=xxxx; 4y=yyyy; 1x=1x+a*dt*(4x-1y)/sqrt(1x-2x)2+(1y-2y)2); 1y=1y+a*dt*(4y-1y)/sqrt(1x-2x)2+(1y-2y)2); 4x=200-yyyy; 4y=xxxx;endaxis(0 200 0 200);plot(1xb,1yb,-,2xb,2yb,:,3xb,3yb,-.,4xb,4yb,-)实验的心得体会:通过两学期对matlab这门课程的学习,我们组的每个成员都受益匪浅。毫无疑问matlab计算软件具有强大的功能,我们在享受这强大功能的同时不仅了解到了更多有关数学建模方面的知识,也学会了使用一些基础数学软件来解决一些复杂的数学问题,更可贵的是我们在实验的过程中逐渐有了自己的一种对数学建模的思维模式,也养成了独立思考,积极分析、解决问题的习惯,与此同时,由于我们组每位成员的默契配合,这次的实验报告也自然而然地融入了我们和谐的团队精神。相信这次的实验会对我们今后的数学学习产生深远而重大的影响。毫无疑问的是,高校开展数学实验课符合教育改革的方向,是很具生命力的新型课程。科学计算离不开计算机,更离不开计算方法和思维。没有好的计算方法,超级计算机就是超级废铁。人类的计算能力等于计算工具的性能与计算方法的效能的乘积,这一形象化公式表达了硬件与计算方法对于计算能力的同等重要性。当然,对我们经济与金融专业的大学生来说,这些新型计算方法的学习就显得尤为必要了。等到我们走上工作岗位后,我们可以主动的去解决一些力所能及的经济现象分析之类的问题,从而更深刻的理解其中蕴含的经济学规律,这对我们今后的发展都是非常有利的。此外,这门课程激发了我们独立创造,积极思考的兴趣,当然也鼓励了我们个性化的发展,并且学习的氛围也比较轻松。在实验上机课中,通过自己对实验本身的体会,配合老师少量的点睛指导,最大程度的发挥了这门课应有的教学效果,使我们的能力得到进一步的培养和提升。在这次的实验过程中,我们充分利用了matlab强大的可视化功能、数值计算功能和符号运算功能,使
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建筑方案设计人员组成包括
- 2025年机械入职笔试题及答案
- 双重预防体系培训考试题及答案
- 现场文明施工、防止施工扰民措施、环保和保卫方案
- 岗位危险源及控制措施考试及答案
- 咨询项目招标代理方案
- 建筑台阶处理方案设计说明
- 茶社建筑方案设计图纸大全
- 幼儿园有密接人员应急预案
- 搞笑合同范本模板下载(3篇)
- 安静与智慧主题班会课件
- 危险货物道路运输规则第4部分:运输包装使用要求(JTT617.4-2018)
- 2024年四川省成都市中考数学真题及答案解析
- 部队军事体能训练课件
- 狗猫鼠全文赏析课件
- 国有企业外部董事个人履职报告
- 船舶拆解资金管理办法
- 增值税发票培训知识课件
- 2025年对酒驾醉驾问题谈心谈话记录内容范文
- 【《以儿歌为载体的小班幼儿生活自理能力提升路径分析》11000字】
- 2025年《3~6岁儿童学习与发展指南》试题(+答案)
评论
0/150
提交评论