主成分分析法例子ppt课件_第1页
主成分分析法例子ppt课件_第2页
主成分分析法例子ppt课件_第3页
主成分分析法例子ppt课件_第4页
主成分分析法例子ppt课件_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PCA的基本原理PCA的计算步骤PCA应用实例 主成分分析 PCA 具体例子 秦楠 一 主成分分析的基本原理 假定有n个样本 每个样本共有p个变量 构成一个n p阶的数据矩阵 1 降维处理 当p较大时 在p维空间中考察问题比较麻烦 降维是用较少的几个综合指标代替原来较多的变量指标 而且使这些较少的综合指标既能尽量多地反映原来较多变量指标所反映的信息 同时它们之间又是彼此独立的 定义 记x1 x2 xP为原变量指标 z1 z2 zm m p 为新变量指标 2 系数lij的确定原则 zi与zj i j i j 1 2 m 相互无关 z1是x1 x2 xP的一切线性组合中方差最大者 z2是与z1不相关的x1 x2 xP的所有线性组合中方差最大者 zm是与z1 z2 zm 1都不相关的x1 x2 xP 的所有线性组合中方差最大者 则新变量指标z1 z2 zm分别称为原变量指标x1 x2 xP的第一 第二 第m主成分 从以上的分析可以看出 主成分分析的实质就是确定原来变量xj j 1 2 p 在诸主成分zi i 1 2 m 上的载荷lij i 1 2 m j 1 2 p 从数学上可以证明 载荷lij分别是相关矩阵的m个较大的特征值所对应的特征向量 二 计算步骤 一 计算相关系数矩阵rij i j 1 2 p 为原变量xi与xj的相关系数 rij rji 其计算公式为 3 4 二 计算特征值与特征向量 解特征方程 求出特征值 并使其按大小顺序排列 分别求出对应于特征值的特征向量 要求 1 即 其中表示向量的第j个分量 计算主成分贡献率及累计贡献率 贡献率 累计贡献率 一般取累计贡献率达85 95 的特征值所对应的第一 第二 第m m p 个主成分 6 各主成分的得分 三 主成分分析方法应用实例 表1某农业生态经济系统各区域单元的有关数据 步骤如下 1 将表1中的数据作标准差标准化处理 然后将它们代入公式 4 计算相关系数矩阵 见表2 表2相关系数矩阵 2 由相关系数矩阵计算特征值 以及各个主成分的贡献率与累计贡献率 见表3 由表3可知 第一 第二 第三主成分的累计贡献率已高达86 596 大于85 故只需要求出第一 第二 第三主成分z1 z2 z3即可 表3特征值及主成分贡献率 3 对于特征值 4 6610 2 0890 1 0430分别求出其特征向量l1 l2 l3 表4主成分载荷 第一主成分z1与x1 x5 x6 x7 x9呈显出较强的正相关 与x3呈显出较强的负相关 而这几个变量则综合反映了生态经济结构状况 因此可以认为第一主成分z1是生态经济结构的代表 第二主成分z2与x2 x4 x5呈显出较强的正相关 与x1呈显出较强的负相关 其中 除了x1为人口总数外 x2 x4 x5都反映了人均占有资源量的情况 因此可以认为第二主成分z2代表了人均资源量 分析 显然 用三个主成分z1 z2 z3代替原来9个变量 x1 x2 x9 描述农业生态经济系统 可以使问题更进一步简化 明了 第三主成分z3 与x8呈显出的正相关程度最高 其次是x6 而与x7呈负相关 因此可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论