




免费预览已结束,剩余29页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第二节神经网络基础知识 生物神经元人工神经元模型人工神经网络模型 神经生理学和神经解剖学的研究结果表明 神经元 Neuron 是脑组织的基本单元 是人脑信息处理系统的最小单元 生物神经元生物神经网络 2 1人工神经网络的生物学基础 2 1 1生物神经元 生物神经元在结构上由 细胞体 Cellbody 树突 Dendrite 轴突 Axon 突触 Synapse 四部分组成 用来完成神经元间信息的接收 传递和处理 人工神经网络的生物学基础 人工神经网络的生物学基础 2 1 2生物神经元的信息处理机理 二信息的传递与接收 人工神经网络的生物学基础 2 1 3生物神经网络 由多个生物神经元以确定方式和拓扑结构相互连接即形成生物神经网络 生物神经网络的功能不是单个神经元信息处理功能的简单叠加 神经元之间的突触连接方式和连接强度不同并且具有可塑性 这使神经网络在宏观呈现出千变万化的复杂的信息处理能力 人工神经网络的生物学基础 2 2人工神经元模型 2 2 1神经元的建模 神经元的人工模型 假设1 多输入单输出 图 a 表明 正如生物神经元有许多激励输入一祥 人工神经元也应该有许多的输入信号 图中每个输入的大小用确定数值xi表示 它们同时输入神经元j 神经元的单输出用oj表示 神经元的人工模型 假设2 输入类型 兴奋性和抑制性 生物神经元具有不同的突触性质和突触强度 其对输入的影响是使有些输入在神经元产生脉冲输出过程中所起的作用比另外一些输入更为重要 图 b 中对神经元的每一个输入都有一个加权系数wij 称为权重值 其正负模拟了生物神经元中突触的兴奋和抑制 其大小则代表了突触的不同连接强度 神经元的人工模型 假设3 空间整合特性和阈值特性 作为ANN的基本处理单元 必须对全部输入信号进行整合 以确定各类输入的作用总效果 图 c 表示组合输人信号的 总和值 相应于生物神经元的膜电位 神经元激活与否取决于某一阈值电平 即只有当其输入总和超过阈值时 神经元才被激活而发放脉冲 否则神经元不会产生输出信号 神经元的人工模型 神经元的输出 图 d 人工神经元的输出也同生物神经元一样仅有一个 如用oj表示神经元输出 则输出与输入之间的对应关系可用图 d 中的某种非线性函数来表示 这种函数一般都是非线性的 神经元的人工模型 神经元模型示意图 神经元的人工模型 2 2 2神经元的数学模型 ij 输入输出间的突触时延 Tj 神经元j的阈值 wij 神经元i到j的突触连接系数或称权重值 f 神经元转移函数 2 2 神经元的人工模型 2 1 2 3 net j WjTX Wj w1w2 wn TX x1x2 xn T 令x0 1 w0 Tj则有 Tj x0w0 2 4 2 2 2神经元的数学模型 神经元的人工模型 2 5 oj f netj f WjTX 2 6 2 2 2神经元的数学模型 神经元的人工模型 2 2 3神经元的转移函数 神经元各种不同数学模型的主要区别在于采用了不同的转移函数 从而使神经元具有不同的信息处理特性 最常用的转移函数有4种形式 神经元的人工模型 1 阈值型转移函数 1x 0f x 2 7 0 x 0 2 2 3神经元的转移函数 神经元的人工模型 2 非线性转移函数 2 2 3神经元的转移函数 神经元的人工模型 Log sigmoid对数正切S型传递函数tan sigmoid双正切S型传递函数 2 3人工神经网络模型 分类 按网络连接的拓扑结构分类层次型结构互连型网络结构按网络内部的信息流向分类前馈型网络反馈型网络 人工神经网络模型 2 3 1网络拓扑结构类型 层次型结构 将神经元按功能分成若干层 如输入层 中间层 隐层 和输出层 各层顺序相连 互连型网络结构 网络中任意两个节点之间都可能存在连接路径 人工神经网络模型 2 3 1网络拓扑结构类型 1 单纯型层次型结构 2 3人工神经网络模型 人工神经网络模型 层次型结构 2 输出层到输入层有连接 人工神经网络模型 2 3 1网络拓扑结构类型 3 层内有连接层次型结构 2 3 1网络拓扑结构类型 人工神经网络模型 1 全互连型结构 2 3 1网络拓扑结构类型 人工神经网络模型 互连型网络结构 2 局部互连型网络结构 2 3 1网络拓扑结构类型 人工神经网络模型 前馈型网络 2 3 2网络信息流向类型 人工神经网络模型 神经网络能够通过对样本的学习训练 不断改变网络的连接权值以及拓扑结构 以使网络的输出不断地接近期望的输出 这一过程称为神经网络的学习或训练 其本质是可变权值的动态调整 2 4神经网络学习 神经网络学习 神经网络的学习类型 有导师学习 有监督学习 无导师学习 无监督学习 死记式学习 2 4神经网络学习 神经网络学习 有关学习的研究在神经网络研究中具有重要地位 改变权值的规则称为学习规则或学习算法 亦称训练规则或训练算法 2 4神经网络学习 有导师学习 有监督学习 有导师学习也称为有监督学习 这种学习模式采用的是纠错规则 在学习训练过程中需要不断给网络成对提供一个输入模式和一个期望网络正确输出的模式 称为 教师信号 将神经网络的实际输出同期望输出进行比较 当网络的输出与期望的教师信号不符时 根据差错的方向和大小按一定的规则调整权值 当网络对于各种给定的输入均能产生所期望的输出时 即认为网络已经在导师的训练下 学会 了训练数据集中包含的知识和规则 可以用来进行工作了 2 4神经网络学习 无导师学习 无监督学习 无导师学习也称为无监督学习 学习过程中 需要不断给网络提供动态输入信息 网络能根据特有的内部结构和学习规则 在输入信息流中发现任何可能存在的模式和规律 同时能根据网络的功能和输入信息调整权值 这个过程称为网络的自组织 其结果是使网络能对属于同一类的模式进行自动分类 在这种学习模式中 网络的权值调整不取决于外来教师信号的影响 可以认为网络的学习评价标准隐含于网络的内部 学习的过程 权值调整的一般情况 神经网络学习 2 4神经网络学习 第二节小结 重点介绍了生物神经元的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度展会现场安保服务委托合同
- 2025仓储与配送一体化服务定金合同模板
- 2025年度电力设施抢修施工安全防护与应急处置合同
- 2025版铁路施工安全风险评估与预防合同
- 2025版太阳能外接电源系统安装合同范本
- 2025年高档木门窗定制与安装服务合同
- 2025年土壤污染修复技术应用效果与成本效益评估研究调研报告
- 2025版城市公共交通设施维护与售后服务合同范本
- 2025版专业外架施工班组劳务承包合作协议书
- 2025版桥梁建设施工设备租赁与施工方案制定合同
- 2025年振兴中学分班考试题及答案
- 肿瘤防治宣传科课件
- 2025年军队文职人员招聘考试(公共科目)测试题及答案一
- 纪检监督检查培训课件
- 酒店公章使用管理办法
- 大兴安岭黄岗锡铁钨多金属矿床的成矿过程研究
- 2025至2030中国裸眼3D行业产业运行态势及投资规划深度研究报告
- 深呼吸有效咳嗽实施方法
- 检修安全监护管理制度
- 2025至2030中国妊娠和排卵测试行业产业运行态势及投资规划深度研究报告
- 高等教育2025年工作要点
评论
0/150
提交评论