


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
等差数列及其前项和(2) 等差数列中的最值问题数学组 一、教学目标1、掌握等差数列的通项公式和前项和公式的形式和应用。2、掌握常见题型的解法及常用思想方法。3、掌握等差数列求最值问题的多种不同方法,并能对最值问题进行归纳总结。二、教学重点和难点重点:等差数列求最值问题的常用解法。难点:通过例题的讲解引导学生对等差数列的最值问题进行归纳和总结,并理解何种形式会有最大值,何种形式会有最小值。三、教学过程1、复习旧知,回顾等差数列的常用公式:(1)通项公式(2)前项和公式(3)等差中项概念(4)等差数列的判定方法定义法:常数()为等差数列;中项公式法:()为等差数列;通项公式法:()为等差数列;前项求和法:()为等差数列(复习时主要以口述为主,必要的公式进行板书,主要让学生进行回顾,强调等差数列的通项公式和前项和公式的形式,即通项公式是关于的一次函数,前项和公式是关于的二次函数,且常数项为0,为后面课程的讲述埋好伏笔。)2、教授新课:复习用书高考总复习学案与测评第87页,题型四:等差数列中的最值问题例4、在等差数列中,已知,前项和为,且,求当取何值时,有最大值,并求出它的最大值。分析:要求为何值时,有最大值,可从的形式入手思考,是关于的二次函数,可以从函数的角度求出的最大值。解:(方法一)因为,且可得 解得所以又因为,所以比较 因此,的最大值为130.思考:在用是关于的二次函数求最值时,如何避免复杂的计算,比如本题中的配方?引导学生讨论得到只要取离对称轴最近的整数处的和,即可得到最值,而对称轴可以由二次函数中的公式得到,这样可以避免复杂的计算,以便提高计算的准确度。3、小组合作讨论思考:为什么等差数列会存在最值,是不是所有的等差数列都有最值呢?什么样的等差数列存在最大值,什么样的等差数列又存在最小值?通过观察数列、归纳特点并讨论可得两类数列存在最值,(1) 若,数列有最大值(2) 若,数列有最小值思考:那有没有更简单的方法来得到等差数列何时取到最值呢?由数列的增减情况可以得到只要找出何时出现正负转折项,在该项处即得到等差数列前项和的最值。以的数列为例,若前7项为正,第8项开始为负,则前7项和为最大值。练习:(方法二)学生用此方法求出例4中的最值,并与前一种方法进行比较。4、归纳等差数列最值问题的求法方法一、利用是关于的二次函数,在离对称轴最近的整数处取得最值。方法二、利用等差数列的单调性,求出正负转折项。思考:本题还有没有什么特点能够使得我们很快得出哪一项开始出现正负转折?引导学生观察得出(方法三)因为,所以由等差数列的性质可以得出所以所以,的最大值为130.5、课内训练复习用书高考总复习学案与测评第85页例4的举一反三题已知数列的前项和,(1)求的通项公式;(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 陶瓷彩绘考试题及答案
- 电力考试试题及答案
- 国企工会面试题及答案
- 中医针灸毕业考试试题及答案
- 警校色觉测试题及答案
- 水果导购考试题及答案
- 校园信息化安全知识培训课件
- 金融精算考试题及答案
- 自然音程测试题及答案
- 北京知识产权培训师课件
- 2025至2030年中国继电保护及自动化设备行业市场现状调查及发展趋向研判报告
- 关于医院“十五五”发展规划(2026-2030)
- 单元整体设计下教、学、评一体化的实施策略
- 云仓代发货合同协议书
- DB32T 5124.3-2025 临床护理技术规范 第3部分:成人危重症患者有创动脉血压监测
- 本质安全培训课件
- 技术团队分红协议书
- 应聘个人简历标准版范文
- 全面深化信息安全培训提高医护人员的保护意识与能力水平
- 2025-2030中国工业CT行业市场运行分析及发展趋势与投资研究报告
- 2025年全球邮轮旅游的复苏与创新探讨
评论
0/150
提交评论