已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
导数专题训练1.已知直线y=x+1与曲线相切,则的值为( B ) (A)1 (B)2 (C) -1 (D)-2解:设切点,则,又.故答案选B 2.若存在过点的直线与曲线和都相切,则等于 A或 B或 C或 D或答案:A【解析】设过的直线与相切于点,所以切线方程为即,又在切线上,则或,当时,由与相切可得,当时,由与相切3.已知函数在R上满足,则曲线在点处的切线方程是 (A) (B) (C) (D) 解析:由得,即,切线方程为,即选A4.设球的半径为时间t的函数。若球的体积以均匀速度c增长,则球的表面积的增长速度与球半径A.成正比,比例系数为C B. 成正比,比例系数为2C C.成反比,比例系数为C D. 成反比,比例系数为2C 【解析】由题意可知球的体积为,则,由此可得,而球的表面积为,所以,即,故选D5.设曲线在点(1,1)处的切线与x轴的交点的横坐标为,则的值为(A) (B) (C) (D) 1解析: 对,令得在点(1,1)处的切线的斜率,在点(1,1)处的切线方程为,不妨设,则, 故选 B.6.(2009安徽卷理)设b,函数的图像可能是 解析:,由得,当时,取极大值0,当时取极小值且极小值为负。故选C。或当时,当时,选C7.若曲线存在垂直于轴的切线,则实数取值范围是_.【答案】: 解析:由题意可知,又因为存在垂直于轴的切线,所以。设曲线在点(1,1)处的切线与x轴的交点的横坐标为,令,则的值为 . 答案:-28.设函数,其中常数a1()讨论f(x)的单调性;()若当x0时,f(x)0恒成立,求a的取值范围。21世纪教育网 解析:本题考查导数与函数的综合运用能力,涉及利用导数讨论函数的单调性,第一问关键是通过分析导函数,从而确定函数的单调性,第二问是利用导数及函数的最值,由恒成立条件得出不等式条件从而求出的范围。解: (I) 21世纪教育网 由知,当时,故在区间是增函数; 当时,故在区间是减函数; 当时,故在区间是增函数。 综上,当时,在区间和是增函数,在区间是减函数。 (II)由(I)知,当时,在或处取得最小值。 由假设知21世纪教育网 即 解得 1a6故的取值范围是(1,6)9设函数()求曲线在点处的切线方程;()求函数的单调区间;()若函数在区间内单调递增,求的取值范围.21世纪教育网 【解析】本题主要考查利用导数研究函数的单调性和极值、解不等式等基础知识,考查综合分析和解决问题的能力(), 曲线在点处的切线方程为.()由,得, 若,则当时,函数单调递减, 当时,函数单调递增, 若,则当时,函数单调递增, 当时,函数单调递减,()由()知,若,则当且仅当,即时,函数内单调递增,若,则当且仅当,即时,函数内单调递增,综上可知,函数内单调递增时,的取值范围是.10.设函数求函数的单调区间;21世纪教育网 (1) 若,求不等式的解集解: (1) , 由,得 .因为 当时,; 当时,; 当时,;所以的单调增区间是:; 单调减区间是: .(2) 由 , 得:. 故:当 时, 解集是:;当 时,解集是: ;当 时, 解集是:11.已知函数,其中若在x=1处取得极值,求a的值;21世纪教育网 求的单调区间;()若的最小值为1,求a的取值范围。 解()在x=1处取得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 环保项目管理师面试题及答案
- 人力资源行业数字化转型调查报告
- 会计招聘真题及答案
- 公务员面试罗崧面试题及答案
- 海信集团招聘笔试题及答案
- 公务员面试考生疫情防控面试题及答案
- 国家能源集团招聘题库及答案
- 国机集团校招笔试题及答案
- 公务员考试思考试题及答案
- 公务员考试视力试题及答案
- 新生儿溢奶与吐奶护理要点
- 护理求职展示
- 建筑行业项目经理职业规划
- 高中选科规划课件
- 2025年互联网信息审核员考试题库及答案
- 2025年乡村振兴面试题及答案
- 2025年《新课程标准解读》标准课件
- 2024年普通高中学业水平选择性考试(福建卷)物理试题含答案
- 交流发言:深入实施数字化转型条件下税费征管“强基工程”推动县税务局工作高质量发展
- 1与食品经营相适应的操作流程
- 高考数学专项复习:导数压轴大题归类(解析版)
评论
0/150
提交评论