



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
初中数学九年级知识点总结:相似一、目标与要求1掌握相似多边形的定义、表示法,并能根据定义判断两个多边形是否相似2能根据相似比进行计算3通过与相似多边形有关概念的类比,得出相似三角形的定义,领会特殊与一般的关系4能根据定义判断两个多边形是否相似,训练学生的判断能力5能根据相似比求长度和角度,培养学生的运用能力6通过与相似多边形有关概念的类比,渗透类比的教学思想,并领会特殊与一般的关系二、知识框架 三、重点、难点1理解并相似三角形的判定与性质2位似图形的有关概念、性质与作图3利用位似将一个图形放大或缩小4用图形的坐标的变化来表示图形的位似变换5把一个图形按一定大小比例放大或缩小后,点的坐标变化的规律四、知识点、概念总结1. 相似:每组图形中的两个图形形状相同,大小不同,具有相同形状的图形叫相似图形。相似图形强调图形形状相同,与它们的位置、颜色、大小无关。相似图形不仅仅指平面图形,也包括立体图形相似的情况。我们可以这样理解相似形:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的若两个图形形状与大小都相同,这时是相似图形的一种特例全等形2.相似三角形:对应角相等,对应边成比例的两个三角形叫做相似三角形。互为相似形的三角形叫做相似三角形 相似形的识别:对应边成比例,对应角相等。成比例线段(简称比例线段):对于四条线段a、b、c、d,如果其中两条线段的长度的比与另两条线段的长度的比相等,即(或a:b=c:d),那么,这四条线段叫做成比例线段,简称比例线段。黄金分割:用一点P将一条线段AB分割成大小两条线段,若小段与大段的长度之比等于大段与全长之比,则可得出这一比值等于0618。这种分割称为黄金分割,分割点P叫做线段AB的黄金分割点,较长线段叫做较短线段与全线段的比例中项。3.相似三角形的判定方法:根据相似图形的特征来判断。(对应边成比例,对应角相等) .平行于三角形一边的直线(或两边的延长线)和其他两边相交,所构成的三角形与原三角形相似; .如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似; 如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似; 如果两个三角形的三组对应边的比相等,那么这两个三角形相似;4.直角三角形相似判定定理:.斜边与一条直角边对应成比例的两直角三角形相似。.直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,并且分成的两个直角三角形也相似。 5. 一定相似的三角形(1)两个全等的三角形一定相似。(全等三角形是特殊的相似三角形,相似比为1) (2)两个等腰直角三角形一定相似(两个等腰三角形,如果其中的任意一个顶角或底角相等,那么这两个等腰三角形相似。) (3)两个等边三角形一定相似。6. 三角形相似的判定定理推论推论一:顶角或底角相等的两个等腰三角形相似。 推论二:腰和底对应成比例的两个等腰三角形相似。 推论三:有一个锐角相等的两个直角三角形相似。 推论四:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。 推论五:如果一个三角形的两边和其中一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。7. 相似的性质(1)相似三角形对应角相等,对应边成比例。 (2)相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。 (3)相似三角形周长的比等于相似比。 (4)相似三角形面积的比等于相似比的平方。 (5)相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方 (6)若a:c =c:b,即c2=ab,则c叫做a,b的比例中项 (7)c/d=a/b 等同于ad=bc.9.相似的应用:位似(1)位似图形:如果两个多边形不仅相似,而且对应顶点的连线相交于一点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比(2)掌握位似图形概念,需注意:位似是一种具有位置关系的相似,所以两个图形是位似图形,必定是相似图形,而相似图形不一定是位似图形;两个位似图形的位似中心只有一个;两个位似图形可能位于位似中心的两侧,也可能位于位似中心的一侧;位似比就是相似比利用位似图形的定义可判断两个图形是否位似(3)位似图形首先是相似图形,所以它具有相似图形的一切性质位似图形是一种特殊的相似图形,它又具有特殊的性质,位似图形上任意一对对应点到位似中心的距离等于位似比(相似比)(4)两个位似图形的主要特征是:每对位似对应点与位似中心共线;不经过位似中心的对应线段平行(5)利用位似,可以将一个图形放大或缩小,其步骤见下面例题作图时要注意:首先确定位似中心,位似中心的位置可随意选择;确定原图形的关键点,如四边形有四个关键点,即它的四个顶点;确定
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025江苏无锡市锡山经济技术开发市政工程有限公司招聘1人笔试历年参考题库附带答案详解
- 2025年南昌县小蓝经开区某单位招聘派遣制工作人员7人笔试历年参考题库附带答案详解
- 2025内蒙古巴彦淖尔市能源(集团)有限公司招聘笔试历年参考题库附带答案详解
- 2025赤峰市委党校竞争性比选事业编制工作人员模拟试卷含答案详解
- 2025贵州茅台酒股份有限公司高层次人才(博士研究生)引进14人考前自测高频考点模拟试题带答案详解
- 2025年河北廊坊大厂县中医医院公开招聘医师10人考前自测高频考点模拟试题有完整答案详解
- 2025年临沂市体育局部分事业单位公开招聘教师(4名)模拟试卷及答案详解(新)
- 2025安徽淮安市毛集实验区招聘区属国有企业副职岗位3人模拟试卷完整参考答案详解
- 2025国家税务总局税务干部学院招聘事业单位工作人员36人模拟试卷及1套参考答案详解
- 2025年度青岛市园林和林业局所属事业单位青岛市园林和林业综合服务中心公开模拟试卷及答案详解(名师系列)
- 带下病中医教学课件
- 2025年第十届“学宪法、讲宪法”竞赛题库(含答案)
- 低空飞行器的安全性与法规体系研究
- 物业监控调取管理制度
- 商场危险作业管理制度
- T/CADBM 55-2021建筑室内窗饰产品罗马帘
- 《翡翠玉石翡翠玉》课件
- 2025成都市辅警考试试卷真题
- 中国慢性淋巴细胞白血病-小淋巴细胞淋巴瘤的诊断与治疗指南(2025年版)解读课件
- 2025年刑法知识竞赛复习题库及答案(320题)
- DB42-T 2051-2023 文物保护单位保护标志及保护界桩设置规范
评论
0/150
提交评论