已阅读5页,还剩17页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高数一 复习计划 考研数学一之高数上册学习计划数学复习具有基础性和长期性的特点,数学知识的学习是一个长期积累的过程,要遵循由浅入深的原则,先将知识基础打牢,构建起知识体系,然后再去追求技巧以及方法,一座高楼大厦必定是建立在坚实的地基之上的,因此我们将基础知识的复习安排在第一阶段,希望大家给予足够重视。 同时,有一个科学的学习计划,才能更迅速有效地掌握数学知识。 我们按照这个原则制定了详尽的数学学习计划,使得同学们能够迅速的巩固基础知识,循序渐进,加快数学学习的步伐,为今后数学水平的提高打下一个坚实的基础。 在研究生考试过程中先人一步,胜人一筹。 一、数学一试卷结构此试卷结构参考09年考研大纲种类内容比例题型比例数学一高等数学约56%线性代数约22%概率论与数理统计约22%填空题与选择题约37%解答题(包括证明题)约63% 二、数学复习全年规划第一阶段夯实基础,全面复习主要目标基本教材阶段。 吃透考研大纲的要求,做到准确定位,事无巨细地对大纲涉及到的知识点进行地毯式的复习,夯实基础,训练数学思维,掌握一些基本题型的解题思路和技巧,为下一个阶段的题型突破做好准备。 第二阶段熟悉题型,前后贯通主要目标复习全书阶段。 大量习题训练,熟悉考研题型,加强知识点的前后联系,分清重难点,让复习周期尽量缩短,把握整体的知识体系,熟练掌握定理公式和解题技巧。 第三阶段查缺补漏,模拟训练主要目标套题、模拟训练题阶段。 练习答题规范,保持卷面整洁,增加信心,练习掌握考试时间的分配,增强临场应变的能力,要对自己前两个阶段复习中出现含糊不清,掌握不牢的地方重点加强。 第四阶段强化记忆,保持状态主要目标查漏补缺,回归教材。 强化记忆,调整心态,保持状态,积极应考。 三、教材的选择高等数学同济版讲解比较细致,例题难度适中,涉及内容广泛,是现在高校中采用比较广泛的教材,配套的辅导教材也很多。 线性代数清华版讲解详实,细致深入,适合时间充裕的同学(推荐)。 线性代数同济版轻薄短小,简明易懂,适合基础不好的同学。 概率论与数理统计浙大版课后习题中基本的题型都有覆盖。 四、学习方法解读 (1)强调学习而不是复习对于大部分同学而言,由于高等数学学习的时间比较早,而且原来学习所针对的难度并不是很大,又加上遗忘,现在数学知识恐怕已经所剩无几了,所以,这一遍强调学习,要拿出重新学习的劲头亲自动手去做,去思考。 (2)复习顺序的选择问题我们建议先高等数学再线性代数再概率论与数理统计。 高等数学是线性代数和概率论与数理统计的基础,一定要先学习。 我们并不主张三门课齐头并进,毕竟三门课有所区别,要学一门就先学精了再继续推进,做成“夹生饭”会让你有种骑虎难下的感觉,到时你反而会耗费更多的时间去收拾烂摊子。 同学们也可根据自己的特殊情况调整复习顺序。 (3)注意基本概念、基本方法和基本定理的复习掌握考研辅导书和大纲,先吃透基本概念、基本方法和基本定理,只有对基本概念深入理解,对基本定理和公式牢牢记住,才能找到解题的突破口和切入点。 分析表明,考生失分的一个重要原因就是对基本概念、基本定理理解不准确,基本解题方法没有掌握。 因此,首轮复习必须在掌握和理解数学基本概念、基本定理、重要的数学原理、重要的数学结论等数学基本要素上下足工夫,如果这个基础打不牢,其他一切都是空中楼阁。 (4)加强练习,重视总结、归纳解题思路、方法和技巧数学考试的所有任务就是解题,而基本概念、公式、结论等也只有在反复练习中才能真正理解和巩固。 试题千变万化,但其知识结构却基本相同,题型也相对固定,一般存在相应的解题规律。 通过大量的训练可以切实提高数学的解题能力,做到面对任何试题都能有条不紊地分析和计算。 (5)不要依赖答案学习的过程中一定要力求全部理解和掌握知识点,做题的过程中先不要看答案,如果题目确实做不出来,可以先看答案,看明白之后再抛弃答案自己把题目独立地做一遍。 不要以为看明白了就会了,只有自己真正做一遍,印象才能深刻。 (6)强调积极主动地亲自参与,并出笔记注意一定要在学习过程中写出自己的感受,可以在书上以题注的形式或者就是做笔记,尽量深挖例题内涵,这一点很重要,并且要贯彻前三轮的复习,如果最后一轮复习我们有了自己的笔记,就会很轻松。 有同学说学习线性代数最好的办法就是亲自推导,这话很有道理,事实上如果我们学习什么知识都采取这种态度的话,那肯定都会学得非常好。 五、复习进度表每天至少应该花2.5-3.5个左右来复习数学,这样才能保证在基础阶段把整个数学的基础知识复习完。 其中用1.52个左右的时间理解掌握概念、定义等,用11.5左右来做习题巩固。 对于数学基础较薄弱的同学建议每天再加一个的复习时间用来做习题并总结。 具体每章复习所用的时间我们在每章题目旁边给出了一个复习时间限定期限,如果超出这个时间,或者少于这个时间最好要和你的主管顾问讲明原因,由主管顾问根据你学习的情况来调整复习的时间与内容。 注意:本计划对应习题涵盖在以下教材中:高等数学第五版同济大学应用数学系主编高等教育出版社线性代数第二版居余马编著清华大学出版社概率论与数理统计第三版浙江大学编著高等教育出版社复习计划使用说明 (1)学习计划里有日期、学习时间,日期是对本章知识内容的限定时间,学习时间是针对复习知识点在大纲中的要求而建议应该使用的学习时间,同学们在学习的时候一定要两者同时兼顾,平时如果学习时间不够,可利用周末的时间做调整。 (2)计划里明确了每章该看的知识点、该做的习题,后面备有大纲要求,学员要根据大纲要求合理学习知识点。 (3)每章复习结束后都必须做单元测试题,单元测试题是准确把握学员是否按照大纲要求掌握了本章内容。 学员在做复习完每章内容后,跟主管顾问要本章测试题。 测试题做完后一定要把成绩反馈给你的主管顾问,以便主管顾问和教研组老师根据你的复习情况及时调整你的学习方法与内容。 (4)同学们在复习的时候一定要和你周围的同学、老师多交流学习心得。 只有你总结出来的方法才是最适合你的方法。 (5)同学们在复习的过程中肯定要遇到一些疑难问题、做错的题目,一定要在第一时间把他到你的笔记本里,方便的时候可以答疑。 高等数学第一章函数与极限(7天)微积分中研究的对象是函数。 函数概念的实质是变量之间确定的对应关系。 极限是微积分的理论基础,研究函数实质上是研究各种类型极限。 无穷小就是极限为零的变量,极限方法的重要部分是无穷小分析,或说无穷小阶的估计与分析。 我们研究的对象是连续函数或除若干点外是连续的函数。 期学习时间复习知识点与对应习题大纲要求第第一函数的概念,常见的函数(有界函数、1理解函节映射与函数奇函数与偶函数、单调函数、周期函数)、复合函数、反函数、初等函数具体概念和形式.习题114,5,7,8,9,13,15,18数的概念,掌握函数的表示法,并会建立应用问题中的函数关系.2了解函数的有界性、单调性、周期性和奇偶性3理解复合函数及分段函数的概念,了解反函数及隐函数的概念4掌握基本初等函数的性质及其图形,了解初等函数的概念.5理解极限的概念,理解函数左极限与右极限的概念,以及函数极限存在与左、右极限之间的关系第二节数列的极限数列定义,数列极限的性质(唯一性、有界性、保号性)P26(例1,例2,例3)习题121,3,4,5,6第三节函数的极限函数极限的基本性质(不等式性质、极限的保号性、极限的唯一性、函数极限的函数局部有界性,函数极限与数列极限的关系等)P33(例4,例5)P35(例7)习题131,2,4,6,7,8第四节无穷大与无穷小无穷小与无穷大的定义,它们之间的关系,以及与极限的关系习题141,2,4,5,6,7第五节极限的运算法则极限的运算法则(6个定理以及一些推论)P46(例3,例4),P47(例6),习题151,2,3第六节极限存在准则两个重要极限(要牢记在心,要注意极限成立的条件,不要混淆,应熟悉等价表达式),函数极限的存在问题(夹逼定理、单调有界数列必有极限),利用函数极限求数列极限,利用夹逼法则求极限,求递归数列的极限P51(例1)习题161,2,46掌握极限的性质及四则运算法则.7掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法8理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限9理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型10了解连续函数的性质和初等函数的连续性,理解闭第七节无穷小的比较无穷小阶的概念(同阶无穷小、等价无穷小、高阶无穷小、k阶无穷小),重要的等价无穷小(尤其重要,一定要烂熟于心)以及它们的重要性质和确定方法P57(例1)P58(例5)习题171,2,3,4第八节函数的连续性与间断性特点函数的连续性,间断点的定义与分类(第一类间断点与第二类间断点),判断函数的连续性(连续性的四则运算法则,复合函数的连续性,反函数的连续性)和间断点的类型。 例1例5习题182,3,4,5第九节连续函数的运算与初等函数的连续性连续函数的运算与初等函数的连续性(包括和,差,积,商的连续性,反函数与复合函数的连续性,初等函数的连续性)例4例8习题191,2,3,4,5第十理解闭区间上连续函数的性质:有界性与最大值最小值定理,零点定理与介值定理节闭区间上连续函数的性质(零点定理对于证明根的存在是非常重要的一种方法).例1例2,习题1101,2,3,4,5区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质3.5总复习题一1,2,8,9,10,11,122本章测试题检验自己是否对本章的复习合格(合格成绩为80分以上),如果合格继续向前复习,如果不合格总结自己的薄弱点还要针对性的对本章的内容进行复习或者到总部答疑。 第二章导数与微分(6天)一元函数的导数是一类特殊的函数极限,在几何上函数的导数即曲线的切线的斜率,在力学上路程函数的导数就是速度,导数有鲜明的力学意义和几何意义以及物理意义。 函数的可微性是函数增量和自变量增量之间关系的另一种表达形式。 函数微分是函数增量的线性主要部分。 日期学习时间复习知识点与对应习题大纲要求第二周第一节:导数的概念导数的定义、几何意义、力学意义,单侧与双侧可导的关系,可导与连续之间的关系(非常重要,经常会出现在选择题中),函数的可导性,导函数,奇偶函数与周期函数的导数的性质,按照定义求导及其适用的情形,利用导数定义求极限.会求平面1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导曲线的切线方程和法线方程.例3例7习题216,7,9,11,14,15,16,17数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系第二节函数的求导法则复合函数求导法、求初等函数的导数和多层复合函数的导数,由复合函数求导法则导出的微分法则,(幂、指数函数求导法,反函数求导法),分段函数求导法例例17习题222,3,4,7,8,9,10,12)2掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分3了解高阶导数的概念,会求简单函数的高阶导数4会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.第三节高阶导数高阶导数和N阶导数的求法(归纳法,分解法,用莱布尼兹法则)例1例7习题232,3,4,7,8,9第四节隐函数及参数方程由参数方程确定的函数的求导法,变限积分的求导法,隐函数的求导法例1例10习题242,4,7,8,9,11第五节函数的微函数微分的定义,微分运算法则,一元函数微分学的简单应用例1例6习题251,2,3,4,5,6,分2.5-3.5总复习题二1,2,3,5,6,9,11,132第二章测试题第三章微分中值定理与导数的应用(8天)连续函数是我们研究的基本对象,函数的许多其他性质都和连续性有关。 在理解有关定理的基础上可以利用导数判断函数单调性、凹凸性和求极值、拐点,并体现在作图上。 微分学的另一个重要应用是求函数的最大值和最小值。 期学习时间复习知识点与对应习题大纲要求第三周第一节微分中值定理微分中值定理及其应用(费马定理及其几何意义,罗尔定理及其几何意义,拉格郎日定理及其几何意义、柯西定理及其几何意义)例1,习题311151理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理2掌握用洛必达法则求未定式极限的方法3理解函数的极值概念,掌第二节洛必达法则洛比达法则及其应用例1例10,习题3214第三节泰勒公式泰勒中值定理,麦克劳林展开式例1例3习题3317,10第四求函数的单调性、凹凸性区间、极值节函数的单调性。 点、拐点、渐进线(选择题及大题常考)例1例12习题344.5.8.9.11.12.14握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用4会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形5了解曲率和曲率半径的概念,会计算曲率和曲率半径第五节函数极性与最大值最小值函数的极值,(一个必要条件,两个充分条件),最大最小值问题.函数性的最值和应用性的最值问题,与最值问题有关的综合题例1例6习题3-5:1,4,5,6,7,10,11,14第六节函数图形的描绘简单了解利用导数作函数图形(一般出选择题及判断图形题),对其中的渐进线和间断点要熟练掌握,一元函数的最值问题(三种情形)。 例1例3习题3615第七节曲率曲率、曲率的计算公式,与曲率相关的问题例1例3,习题3718第八节方程近似解方程的近似解法例1例2习题382,32.5-3.5总复习题三112,192第三章测试题总结第四章不定积分(7天)积分学是微积分的主要部分之一。 函数积分学包括不定积分和定积分两部分。 在积分的计算中,分项积分法,分段积分法,换元积分法和分部积分法是最基本的方法。 日期学习时间复习知识点与对应习题大纲要求第四周第一节不定积分的概念与性质原函数与不定积分的概念与基本性质(它们各自的定义,之间的关系,求不定积分与求微分或导数的关系),基本的积分公式,原函数的存在性,原函数的几何意义和力学意义例1例16习题4111理解原函数概念,理解不定积分的概念2掌握不定积分的基本公式,掌握不定积分换元积分法与分部积分法3会求有理函数、三角函数有理式及简单无理函数的积分第二节换元积分法不定积分的换元积分法,第二类换元法例1例27第三节分部积分法不定积分的计算习题422(120)2.5-3.5不定积分的计算习题422(2140)2.5-3.5不定积分的分部积分法例1例10习题43120第四节有理函数积分有理函数积分法,可化为有理函数的积分,例1例8习题445202.5-3.5不定积分计算总复习题四1202.5-3.5不定积分计算总复习题四21402总结本章第五章定积分(6天)日期学习时间复习知识点与对应习题大纲要求第五周一概念与性质定积分的概念与性质(可积存在定理)(定积分的7个性质)习题512,3,5,6,7,81理解原函数概念,理解定积分的概念2掌握定积分的基本公式,掌握定积分的性质及定积分中值定理,掌握换元积分法与分部积分法3会求有理函数、三角函数有理式及简单无理函数的积分4理解积分上限的函数,会求第二节微积分的基本公式积分上限函数及其导数牛顿莱布尼兹公式例1例8习题52152.5-3.5习题52612第三节定积分的换元法与分部积分法例1例10习题5312.5-3.5习题53211第四节反常积分反常积分无界函数反常积分与无穷限反常积分例1例5习题5413第五节反常积分的审敛法例1例8习题5513它的导数,掌握牛顿莱布尼茨公式5了解广义反常积分的概念,会计算广义反常积分2.5-3.5总复习题五11112,132总结本章第六章定积分的应用(4天)日期学习时间复习知识点与对应习题大纲要求第六周第一节定积分的元素法定积分元素法一元函数积分学的几何应用(求平面曲线的弧长与曲率,求平面图形的面积,求旋转体的体积,求平行截面为已知的立体体积,求旋转面的面积)例1例141.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心等)及函数的平均值等练习扩展定积分应用的一些计算习题62115第二节几何应用定积分的几何应用相关计算习题621630第三节物理应用定积分的物理应用(用定积分求引力,用定积分求液体静压力,用定积分求功)。 综合题目的求解。 例1例5习题63152.5-3.5定积分的物理应用定积分综合题目求解习题636122.5-3.5总复习题六192总结本章第七章:向量代数和空间解析几何(4天)向量的各种运算及与偏导数几何应用的结合;平面、直线方程的建立及位置关系,曲面、曲线方程在多元函数微积分中的应用。 期学习时间复习知识点与对应习题大纲要求第六周第七周第一节向量及其线性运算向量及其线性运算(向量概念,向量的线性运算,空间直角坐标系,利用坐标作向量的线性运算,向量的模、方向、投影)例1例8习题7111.12.13.15.17.18.191.理解空间直角坐标系,理解向量的概念及其表示.2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件.3.理解单位向量、方向数与方向余弦、向第二节数量积,向量积,混合积(向量的数量积,向量的向量积)例1例7习题72:3,4,6,9,10第三节曲面及其方程曲面方程旋转曲面、柱面、二次曲面。 旋转轴为坐标轴的旋转曲面的方程,常用的二次曲面方程及其图形,空间曲线的参数方程和一般方程,空间曲线在坐标面上的投影曲线方程)例1例5习题732.5.6,8,9,10量的坐标表达式,掌握用坐标表达式进行向量运算的方法.4.掌握平面方程和直线方程及其求法.5会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题.6会求点到直线以及点到平面的距离.7.了解曲面方程和空间曲线方程的概念.8.了解常用二次曲面的方程及其图形,会求以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程.9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.第四节空间直线及其方程空间直线及其方程(空间直线的对称式方程与参数方程,两直线的夹角,直线与平面的夹角)例1例4习题742,3,5,6第五节平面及其方程平面,平面方程,两平面之间的夹角例1例5习题751,2,3,5,6,9第六节空间及解析几何直线与直线的夹角以及平行,垂直的条件,点到平面和点到直线的距离,球面,母线平行于坐标轴的柱面例1例7习题7619,11,122.5-3.5总复习题七1,921第八章多元函数微分法及其应用(10天)在一元函数微分学的基础上,讨论多元函数的微分法及其应用,主要是二元函数的偏导数、全微分等概念,计算它们的各种方法及其应用。 学习时间复习知识点与对应习题大纲要求2.5-3.5多元函数的基本概念(二元函数的极限、连续性、有界性与最大值最小值定理、介值定理),例18,习题812,3,4,5,6,81理解多元函数的概念,理解二元函数的几何意义.2了解二元函数的极限与连续性的概念以及有界闭区域上连续函数的性质3理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性4理解方向导数与梯度的概念并掌握其计算方法.5掌握多元复合函数一阶、二阶偏导数的求法6会用隐函数的2.5-3.5偏导数(偏导数的概念,二阶偏导数的求解),例18,习题821,2,3,4,6,92.5-3.5全微分(全微分的定义,可微分的必要条件和充分条件),例1,2,3,习题831,2,3,42.5-3.5多元复合函数的求导法则(多元复合函数求导,全微分形式的不变性),例16,习题841122.5-3.5隐函数的求导公式(隐函数存在的3个定理),例14,习题85192.5-3.5多元函数微分学的几何应用(了解曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程),例27,习题86192.5-3.5方向导数与梯度(方向导数与梯度的概念与计算),例15,习题8718,10求导法则.7了解曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程8了解二元函数的二阶泰勒公式9理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题2.5-3.5多元函数的极值及其求法(多元函数极值与最值的概念,二元函数极值存在的必要条件和充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值),例19,习题881102.5-3.5二元函数的泰勒公式(n阶泰勒公式,拉格朗日型余项),例1,习题891,2,33.5总复习题八13,5,6,8,11192本章测试题检验自己是否对本章的复习合格(合格成绩为80分以上),如果合格继续向前复习,如果不合格总结自己的薄弱点还要针对性的对本章的内容进行复习或者到总部答疑。 第九章重积分(7天)在一元函数积分学中,定积分是某种确定形式的和的极限,这种和的极限的概念推广到定义在区域、曲线及曲面上多元函数的情形,便得到重积分、曲线积分及曲面积分的概念,本章主要介绍重积分(包括二重积分和三重积分)的概念、计算方法以及它们的一些应用。 时间复习知识点与对应习题大纲要求2.5-3.5二重积分的概念与性质(二重积分的定义及6个性质),习题911,4,51.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理2掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标)3会用重积分、曲线积分及曲面积分求一些几何量与物理量(曲面面积、质量、质心、形心、转动惯量、引力)2.5-3.5二重积分的计算法(会利用直角坐标、极坐标计算二重积分),例16,习题921,2,4,6,7,8,12,14,15,16)2.5-3.5三重积分(三重积分的概念,利用直角坐标、柱面坐标、球面坐标计算三重积分的计算),例14,习题931,2,4102.5-3.5重积分的应用(曲面的面积、质心、转动惯量、引力),例17,习题942,5,6,8,10,11,142.5-3.5总复习题九1,2,3,6,7,8,9,102总结第十章曲线积分与曲面积分(8天)多元函数积分学中三个基本公式是格林公式、高斯公式及斯托克斯公式,它们分别建立了曲线积分与二重积分、曲面积分与三重积分、曲线积分与曲面积分等的联系。 它们有很强的物理意义即建立了向量的散度与通量、旋度与环量之间的关系,它们有许多重要的应用,主要是简化某些多元函数积分的计算,用格林公式讨论平面曲线积分与路径无关的问题,掌握有关的判断方法和求全微分的原函数的方法等。 时间复习知识点与对应习题大纲要求2.5-3.5对弧长的曲线积分(弧长的曲线积分的定义,性质及计算),例 1、2,习题1011,3,4,51理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系2掌握计算两类曲线积分的方法.3掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数4了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,会用高斯公式,斯托克斯公式计算曲面、曲线积分.5了解散度与旋度的概念,并会计算6会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面2.5-3.5对坐标的曲线积分(对坐标的曲线积分概念、性质及计算),两类曲线积分的联系,例15,习题102382.5-3.5格林公式及其应用(掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数),例17,习题103162.5-3.5对面积的曲面积分(对面积的曲面积分的概念、性质与计算),例 1、2,习题1041,4,5,6,7,82.5-3.5对坐标的曲面积分(对坐标的曲面积分的概念、性质及计算,两类曲面积分之间的联系),例13,习题1053,42.5高斯公式、通量与散度(会用高斯公-3.5式计算曲面、曲线积分,散度的概念及计算),例15,习题1061,3图形的面积、体积、曲面面积、弧长、功及流量等)2.5-3.5斯托克斯公式、换流量与旋度(会用斯托克斯公式计算曲面、曲线积分,旋度的概念及计算),例14,习题1071,22.5-3.5总复习题十14,6,72-3总结第十一章无穷级数(6天)积分学是微积分的主要部分之一。 函数积分学包括不定积分和定积分两部分。 在积分的计算中,分项积分法,分段积分法,换元积分法和分部积分法是最基本的方法。 学习时间复习知识点与对应习题大纲要求2.5-3.5常数项级数的概念和性质(级数收敛、发散的定义,收敛级数的基本性质),例13,习题111141理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件2掌握几何级数与p级数的收敛与发散的条件2.5-3.5常数项级数的审敛法(掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法,掌握交错级数的莱布尼茨判别法,了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系),例110,习题112153掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法4掌握交错级数的莱布尼茨判别法5了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系6了解函数项级数的收敛域及和函数的概念7理解幂级数收敛半径的概念,掌握幂级数的收敛半径、收敛区间及收敛域的求法8了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和9了解函数展开为泰勒级数的充分必要条件10掌握及的麦克劳林展开式,会用它们将一些简单2.5-3.5幂级数(了解函数项级数的收敛域及和函数的概念,理解幂级数收敛半径的概念,掌握幂级数的收敛半径、收敛区间及收敛域的求法,了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和),例16,习题1131,2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年药品不良反应监测报告培训试题及答案
- 苏州大学教学设计-2025-2026学年中职中职专业课财政税务类73 财经商贸大类
- 2025年专利代理师资格真题及答案解析
- 2025年工商管理硕士资格考试管理经济学题库及答案解析
- 2025年职业态度与职业规范知识考察试题及答案解析
- 2025年生产安全事故应急条例培训考试试题及答案
- 妇产科主治医师考试正常分娩测试题附答案
- 养老院敬老院老人走失应急预案
- 劳动法对职场伤害的规定
- 2025年红十字初级急救员证考试题(附答案)
- 微信表情包设计市场分析
- 电工(初级)考试题及答案(完整版)
- 雅安市雨城区佰诺劳务服务有限公司雅安市雨城区总医院2025年公开招聘编制外工作人员(19人)考试笔试参考题库附答案解析
- 《基础会计》-任务一、二 财务报告的概述和资产负债表(上)
- 财务管理自动报表生成模板
- 安全生产培训考试系统
- 集团公司组织架构调整方案模板
- 客户信息收集工作表模板
- 2025年中国氧化锌(ZnO)声化学涂层行业市场分析及投资价值评估前景预测报告
- 线务员培训课件
- 县妇幼保健服务中心基础设施设备采购项目投标方案
评论
0/150
提交评论