




已阅读5页,还剩19页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3 2圆的对称性 九年级数学 下 第三章圆 定义一 在同一平面内 线段OA绕它固定的一个端点O旋转一周 另一个端点A随之旋转所形成的图形叫圆 固定的端点O叫做圆心 线段OA叫做半径 从运动和集合的观点理解圆的定义 定义二 圆是到定点的距离等于定长的点的集合 知识回顾 复习提问 1 什么是轴对称图形 我们在学过哪些轴对称图形 如果一个图形沿一条直线对折 直线两旁的部分能够互相重合 那么这个图形叫轴对称图形 如线段 角 等腰三角形 矩形 菱形 等腰梯形 正方形 2 我们所学的圆是不是轴对称图形呢 圆的对称性 圆是轴对称图形吗 如果是 它的对称轴是什么 你能找到多少条对称轴 你是用什么方法解决上述问题的 圆是中心对称图形吗 如果是 它的对称中心是什么 你能找到多少个对称中心 你又是用什么方法解决这个问题的 想一想 圆是轴对称图形 想一想 圆的对称轴是任意一条经过圆心的直线 它有无数条对称轴 可利用折叠的方法即可解决上述问题 圆也是中心对称图形 它的对称中心就是圆心 用旋转的方法即可解决这个问题 圆的对称性 猜一猜 请同学们观察屏幕上两个半径相等的圆 请回答 它们能重合吗 如果能重合 请将它们的圆心固定在一起 然后将其中一个圆旋转任意一个角度 这时两个圆还重合吗 归纳 圆具有旋转不变性 即一个圆绕着它的圆心旋转任意一个角度 都能与原来的圆重合 因此 圆是中心对称圆形 对称中心为圆心 圆的中心对称性是其旋转不变性的特例 AOB COD AOC BOD 我们把顶点在圆心的角叫做圆心角 圆心角的概念 判别下列各图中的角是不是圆心角 并说明理由 弦心距 过圆心作弦的垂线 圆心与垂足之间的距离叫做弦心距 四量定理 在同圆或等圆中 如果两个圆心角 两条弧 两条弦 两条弦心距中有一组量相等 那么它们所对应的其余各组量都分别相等 1 如图 AB CD是 O的两条弦 OE OF为AB CD的弦心距 1 如果AB CD 那么 2 如果 那么 3 如果 AOB COD 那么 4 如果OE OF 那么 OE OF AB CD AB CD AB CD OE OF OE OF AOB COD AOB COD AOB COD 练习 证明 AB AC 又 ACB 60 AB BC CA AOB BOC AOC A B C O 例题 解 BOD COD DOE 35 AOE 180 3 35 75 练习 例2 数学理解2 如图 在 O中 AB CD是两条弦 OE AB OF CD 重足分别为E F 如果 AOB COD 那么OE与OF的大小有什么关系 为什么 如果OE OF那么AB与CD的大小有什么关系 为什么 AOB与 COD呢 解 OE OF 理由是 OE AB OF CD OA OB OC OD OEB OFD 90 EOB AOB FOD COD AOB COD EOB FOD 在 EOB和 FOD中 OEB OFD EOB FOD OB OD EOB FOD AAS OE OF 如图 在 O中 AB CD是两条弦 OE AB OF CD 重足分别为E F 如果 AOB COD 那么OE与OF的大小有什么关系 为什么 例2 数学理解2 解 AB CD AB CD AOB COD 理由是 OE AB OF CD OEB OFD 90 在Rt BEO和Rt DFO中 OB OD OE OF Rt BEO Rt DFO HL BE DF 由垂径定理得 AB 2BE CD 2DF AB CD AB CD AOB COD 如图 在 O中 AB CD是两条弦 OE AB OF CD 重足分别为E F 如果OE OF那么AB与CD的大小有什么关系 AB与CD的大小有什么关系 为什么 AOB与 COD呢 例2 数学理解2 随堂练习 2 利用一个圆及其若干条弦分别设计出符合条件的图案 1 是轴对称图形但不是中心对称图形 2 是中心对称图形但不是轴对称图形 3 既是轴对称图形又是中心对称图形 随堂练习 A B C 知识技能 1 如图 A B C D是 O上的四点 AB DC ABC与 DCB全等吗 为什么 数学理解 练习 如图 O中 AB CD 1 求证 AOC BOD 2 求证 AC BD 你能得出什么结论 在同一个圆中 两条平行弦所夹的弦相等 所夹的弧相等 2 1 1 圆是轴对称图形 圆的对称轴是任意一条经过圆心的直线 它有无数条对称轴 2 圆也是中心对称图形 它的对称中心就是圆心 课时小结 4 定理
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 骨髓形态学课件
- 推广生态友好产品获得环保认可
- 信贷调查规程
- 小区楼房共有部分维修
- 2025中信银行长沙分行社会招聘笔试模拟试题及答案解析
- 冰雪乐园探秘制度
- 2025浙江杭州市萧山区第一人民医院编外人员招聘15人笔试备考题库及答案解析
- 考研数学解题策略分析
- 航海船舶海域岗位值班要求
- 工作总结:感悟与感慨的生活经历
- 赛轮埃及年产300万条半钢子午线轮胎项目可行性研究报告
- 保护牙齿爱护牙齿2025年全国爱牙日全文课件
- 新疆G20联盟文海大联考2025-2026学年高三上学期起点物理考试题(含答案)
- 四川地区病历质量评分规范标准
- 烹饪原料知识PPT完整全套教学课件
- 德龙自卸车合格证扫描件(原图)
- 公司法实施条例
- 印刷包装专业英语汇总
- 点线面构成ppt课件
- 不锈钢种类及其电镀前处理工艺综述毕业论文
- 新三国经典台词【完整版】
评论
0/150
提交评论