



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第1讲 数列的概念及简单表示法基础巩固题组(建议用时:40分钟)一、选择题1数列0,1,0,1,0,1,0,1,的一个通项公式是an等于()A. Bcos Ccos Dcos 解析令n1,2,3,逐一验证四个选项,易得D正确答案D2(2014开封摸底考试)数列an满足an1an2n3,若a12,则a8a4()A7 B6 C5 D4解析依题意得(an2an1)(an1an)2(n1)3(2n3),即an2an2,所以a8a4(a8a6)(a6a4)224.答案D3数列an的前n项和为Sn,若a11,an13Sn(n1),则a6等于 ()A344 B3441 C45 D451解析当n1时,an13Sn,则an23Sn1,an2an13Sn13Sn3an1,即an24an1,该数列从第二项开始是以4为公比的等比数列又a23S13a13,an当n6时,a63462344.答案A4设an3n215n18,则数列an中的最大项的值是()A. B. C4 D0解析an3,由二次函数性质,得当n2或3时,an最大,最大为0.答案D5(2014东北三校联考)已知数列an的通项公式为ann22n(nN*),则“1”是“数列an为递增数列”的()A充分不必要条件 B必要不充分条件C充分必要条件 D既不充分也不必要条件解析若数列an为递增数列,则有an1an0,即2n12对任意的nN*都成立,于是有32,.由1可推得,但反过来,由不能得到1,因此“1”是“数列an为递增数列”的充分不必要条件,故选A.答案A二、填空题6( 大连双基测试)已知数列an的前n项和Snn22n1(nN*),则an_解析当n2时,anSnSn12n1,当n1时,a1S14211,因此an答案7数列an中,a11,对于所有的n2,nN*,都有a1a2a3ann2,则a3a5_解析由题意知:a1a2a3an1(n1)2,an(n2),a3a5.答案8数列an中,已知a11,a22,an1anan2(nN*),则a7_解析由已知an1anan2,a11,a22,能够计算出a31,a41,a52,a61,a71.答案1三、解答题9已知数列an中,an1(nN*,aR,且a0)(1)若a7,求数列an的最大项和最小项的值;(2)若对任意的nN*,都有ana6成立,求实数a的取值范围解(1)因为an1(nN*,aR,且a0),又a7,所以an1.结合函数f(x)1的单调性,可知1a1a2a3a4,a5a6a7an1(nN*)所以数列an中的最大项为a52,最小项为a40.(2)an11.因为对任意的nN*,都有ana6成立,结合函数f(x)1的单调性,所以56,解得10a8.故实数a的取值范围是(10,8)10( 陕西五校模拟)设数列an的前n项和为Sn,且Sn4anp,其中p是不为零的常数(1)证明:数列an是等比数列;(2)当p3时,数列bn满足bn1bnan(nN*),b12,求数列bn的通项公式(1)证明因为Sn4anp,所以Sn14an1p(n2),所以当n2时,anSnSn14an4an1,整理得.由Sn4anp,令n1,得a14a1p,解得a1.所以an是首项为,公比为的等比数列(2)解当p3时,由(1)知,an,由bn1bnan,得bn1bn,当n2时,可得bnb1(b2b1)(b3b2)(bnbn1)231,当n1时,上式也成立数列bn的通项公式为bn31.能力提升题组(建议用时:25分钟)11数列an的通项an,则数列an中的最大项是()A3 B19 C. D.解析因为an,运用基本不等式得,由于nN*,不难发现当n9或10时,an最大答案C12( 大庆质量检测)已知数列an满足an1anan1(n2),a11,a23,记Sna1a2an,则下列结论正确的是()Aa2 0141,S2 0142 Ba2 0143,S2 0145Ca2 0143,S2 0142 Da2 0141,S2 0145解析由an1anan1(n2),知an2an1an,则an2an1(n2),an3an,an6an,又a11,a23,a32,a41,a53,a62,所以当kN时,ak1ak2ak3ak4ak5ak6a1a2a3a4a5a60,所以a2 014a41,S2 014a1a2a3a4132(1)5.答案D13(2014山西四校联考)已知数列an的前n项和为Sn,Sn2ann,则an_解析当n2时,anSnSn12ann2an1(n1),即an2an11,an12(an11),数列an1是首项为a112,公比为2的等比数列,an122n12n,an2n1.答案2n114设数列an的前n项和为Sn.已知a1a(a3),an1Sn3n,nN*.(1)设bnSn3n,求数列bn的通项公式;(2)若an1an,nN*,求a的取值范围解(1)依题意,Sn1Snan1Sn3n,即Sn12Sn3n,由此得Sn13n12(Sn3n),又S131a3(a3),故数列Sn3n是首项为a3,公比为2的等比数列,因此,所求通项公式为bnSn3n(a3)2n1,nN*.(2)由(1)知Sn3n(a3)2n1,nN*,于是,当n2时,anSnS
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 初三质量分析会班主任发言
- 电话销售礼仪培训
- 时政播报课件
- 2025版锅炉改造工程设计与施工合同
- 二零二五年瓷砖产品进出口贸易合同
- 2025版电商数据分析与营销托管合同范本
- 二零二五版家庭心理咨询与辅导服务合同书
- 2025版股权投资与资产管理合作协议书
- 二零二五版跨境贸易实务:磋商与订立合同操作指南及案例解析
- 2025版智能家电研发与市场推广合作合同
- 消费品市场2025年消费者对绿色包装认知及需求调研可行性研究报告
- 台球厅消防知识培训课件
- 2025便利店加盟的合同样本
- 评职称老师考试题目及答案
- 2025年医疗器械仓库管理培训试题及答案
- 成都市盐道街中学语文新初一分班试卷含答案
- 渔业船员证书申请表
- 浅谈汽车4S店客户关系管理
- 云南民族大学听课记录表和效果评价表-202203158163
- 中央空调检验批范例
- STOP 6 安全卫生教育
评论
0/150
提交评论