C6-college physics-shyppt课件_第1页
C6-college physics-shyppt课件_第2页
C6-college physics-shyppt课件_第3页
C6-college physics-shyppt课件_第4页
C6-college physics-shyppt课件_第5页
已阅读5页,还剩34页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Lecture7LinearMomentum&Collisions,Keywords,(linear)momentum动量impulse冲量impulse-momentumtheorem动量定理time-averageforce平均冲力interaction相互作用airbags气囊particlessystem:composedofsomeparticles质点系internalforces:amongparticles内力externalforces:actedonfromsurroundings外力,Momentum,FromNewtonslaws:forcemustbepresenttochangeanobjectsvelocity(speedand/ordirection)WishtoconsidereffectsofcollisionsandcorrespondingchangeinvelocityMethodtodescribeistouseconceptoflinearmomentum,scalar,vector,Linearmomentum=productofmassvelocity,Golfballinitiallyatrest,sosomeoftheKEofclubtransferredtoprovidemotionofgolfballanditschangeinvelocity,Momentum,Vectorquantity,thedirectionofthemomentumisthesameasthevelocitysAppliestotwo-dimensionalmotionaswell,Sizeofmomentum:dependsuponmassdependsuponvelocity,Impulse,Inordertochangethemomentumofanobject(say,golfball),aforcemustbeappliedThetimerateofchangeofmomentumofanobjectisequaltothenetforceactingonitGivesanalternativestatementofNewtonssecondlaw(F*t)isdefinedastheimpulseImpulseisavectorquantity,thedirectionisthesameasthedirectionoftheforce,ConcepTest,Supposeaping-pongballandabowlingballarerollingtowardyou.Bothhavethesamemomentum,andyouexertthesameforcetostopeach.Howdothetimeintervalstostopthemcompare?1.Ittakeslesstimetostoptheping-pongball.2.Bothtakethesametime.3.Ittakesmoretimetostoptheping-pongball.,Convinceyourneighbor!,ConcepTest,Supposeaping-pongballandabowlingballarerollingtowardyou.Bothhavethesamemomentum,andyouexertthesameforcetostopeach.Howdothetimeintervalstostopthemcompare?1.Ittakeslesstimetostoptheping-pongball.2.Bothtakethesametime.3.Ittakesmoretimetostoptheping-pongball.,Note:Becauseforceequalsthetimerateofchangeofmomentum,thetwoballsloosemomentumatthesamerate.Ifbothballsinitiallyhadthesamemomenta,ittakesthesameamountoftimetostopthem.,Problem:TeeingOff,A50-ggolfballatrestishitby“BigBertha”clubwith500-gmass.Afterthecollision,golfleaveswithvelocityof50m/s.FindimpulseimpartedtoballAssumingclubincontactwithballfor0.5ms,findaverageforceactingongolfball.,Problem:teeingoff,Given:mass:m=50g=0.050kgvelocity:v=50m/sFind:impulse=?Faverage=?,1.Useimpulse-momentumrelation:,2.Havingfoundimpulse,findtheaverageforcefromthedefinitionofimpulse:,Note:accordingtoNewtons3rdlaw,thatisalsoareactionforcetoclubhittingtheball:,ofclub,CONSERVATIONOFMOMENTUM,ConservationofMomentum,Definition:anisolatedsystemistheonethathasnoexternalforcesactingonitAcollisionmaybetheresultofphysicalcontactbetweentwoobjects“Contact”mayalsoarisefromtheelectrostaticinteractionsoftheelectronsinthesurfaceatomsofthebodies,Momentuminanisolatedsysteminwhichacollisionoccursisconserved(regardlessofthenatureoftheforcesbetweentheobjects),ConservationofMomentum,Theprincipleofconservationofmomentumstateswhennoexternalforcesactonasystemconsistingoftwoobjectsthatcollidewitheachother,thetotalmomentumofthesystembeforethecollisionisequaltothetotalmomentumofthesystemafterthecollision,ConservationofMomentum,Mathematically:MomentumisconservedforthesystemofobjectsThesystemincludesalltheobjectsinteractingwitheachotherAssumesonlyinternalforcesareactingduringthecollisionCanbegeneralizedtoanynumberofobjects,Problem:TeeingOff(cont.),Letsgobacktoourgolfballandclubproblem:,factorof10timessmaller,ConcepTest,SupposeapersonjumpsonthesurfaceofEarth.TheEarth1.willnotmoveatall2.willrecoilintheoppositedirectionwithtinyvelocity3.mightrecoil,butthereisnotenoughinformationprovidedtoseeifthatcouldhappened,ConcepTest,SupposeapersonjumpsonthesurfaceofEarth.TheEarth1.willnotmoveatall2.willrecoilintheoppositedirectionwithtinyvelocity3.mightrecoil,butthereisnotenoughinformationprovidedtoseeifthatcouldhappened,Note:momentumisconserved.LetsestimateEarthsvelocityafterajumpbya80-kgperson.Supposethatinitialspeedofthejumpis4m/s,then:,tinynegligiblevelocity,inoppositedirection,TypesofCollisions,Momentumisconservedinanycollisionwhataboutkineticenergy?InelasticcollisionsKineticenergyisnotconservedSomeofthekineticenergyisconvertedintoothertypesofenergysuchasheat,sound,worktopermanentlydeformanobjectPerfectlyinelasticcollisionsoccurwhentheobjectssticktogetherNotalloftheKEisnecessarilylost,PerfectlyInelasticCollisions:,Whentwoobjectssticktogetherafterthecollision,theyhaveundergoneaperfectlyinelasticcollisionSuppose,forexample,v2i=0.Conservationofmomentumbecomes,PerfectlyInelasticCollisions:,WhatamountofKElostduringcollision?,lostinheat/”gluing”/sound/,MoreTypesofCollisions,ElasticcollisionsbothmomentumandkineticenergyareconservedActualcollisionsMostcollisionsfallbetweenelasticandperfectlyinelasticcollisions,MoreAboutElasticCollisions,BothmomentumandkineticenergyareconservedTypicallyhavetwounknownsSolvetheequationssimultaneously,ProblemSolvingforOne-DimensionalCollisions,SetupacoordinateaxisanddefinethevelocitieswithrespecttothisaxisItisconvenienttomakeyouraxiscoincidewithoneoftheinitialvelocitiesInyoursketch,drawallthevelocityvectorswithlabelsincludingallthegiveninformation,SketchesforCollisionProblems,Draw“before”and“after”sketchesLabeleachobjectincludethedirectionofvelocitykeeptrackofsubscripts,SketchesforPerfectlyInelasticCollisions,TheobjectssticktogetherIncludeallthevelocitydirectionsThe“after”collisioncombinesthemasses,ProblemSolvingforOne-DimensionalCollisions,cont.,WritetheexpressionsforthemomentumofeachobjectbeforeandafterthecollisionRemembertoincludetheappropriatesignsWriteanexpressionforthetotalmomentumbeforeandafterthecollisionRememberthemomentumofthesystemiswhatisconserved,ProblemSolvingforOne-DimensionalCollisions,final,Ifthecollisionisinelastic,solvethemomentumequationfortheunknownRemember,KEisnotconservedIfthecollisioniselastic,youcanusetheKEequationtosolvefortwounknowns,GlancingCollisions,Forageneralcollisionoftwoobjectsinthree-dimensionalspace,theconservationofmomentumprincipleimpliesthatthetotalmomentumofthesystemineachdirectionisconservedUsesubscriptsforidentifyingtheobject,initialandfinal,andcomponents,GlancingCollisions,The“after”velocitieshavexandycomponentsMomentumisconservedinthexdirectionandintheydirectionApplyseparatelytoeachdirection,ProblemSolvingforTwo-DimensionalCollisions,SetupcoordinateaxesanddefineyourvelocitieswithrespecttotheseaxesItisconvenienttochoosethexaxistocoincidewithoneoftheinitialvelocitiesInyoursketch,drawandlabelallthevelocitiesandincludeallthegiveninformation,ProblemSolvingforTwo-DimensionalCollisions,cont,WriteexpressionsforthexandycomponentsofthemomentumofeachobjectbeforeandafterthecollisionWriteexpressionsforthetotalmomentumbeforeandafterthecollisioninthex-directionRepeatforthey-direction,ProblemSolvingforTwo-DimensionalCollisions,final,SolvefortheunknownquantitiesIfthecollisionisinelastic,additionalinformationisprobablyrequiredIfthecollisionisperfectlyinelastic,thefinalvelocitiesofthetwoobjectsisthesameIfthecollisioniselastic,usetheKEequationstohelpsolvefortheunknowns,Rocketpropulsion,Theoperationofarocketdependsuponthelawofconservationoflinearmomentumasappliedtoasystemofparticles,wherethesystemistherocketplusitsejectedfuel.,Becausethegasesaregivenmomentumwhentheyareejectedoutoftheengine,therocketreceivesacompensatingmomentumintheoppositedirection.Therefore,therocketisacceleratedasaresultofthe“push,”orthrust,fromtheexhaustgases.,RocketPropulsion,TherocketisacceleratedasaresultofthethrustoftheexhaustgasesThisrepresentstheinverseofaninelasticcollisionMomentumisconservedKineticEnergyisincreased(attheexpenseofthestoredenergyoftherocketfuel),RocketPropulsion,Theoperationofarocketdependsonthelawofconservationofmomentumasappliedtoasystem,wherethesystemistherocketplusit

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论