《光学检测CH》PPT课件_第1页
《光学检测CH》PPT课件_第2页
《光学检测CH》PPT课件_第3页
《光学检测CH》PPT课件_第4页
《光学检测CH》PPT课件_第5页
已阅读5页,还剩72页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1.0BasicWavefrontAberrationTheoryForOpticalMetrology,ChangchunInstituteofOpticsandFineMechanicsandPhysics,Dr.ZhangXuejun,ThePrincipalpurposeofopticalmetrologyistodeterminetheaberrationspresentinanopticalcomponentoranopticalsystem.Tostudyopticalmetrologytheformsofaberrationsthatmightbepresentneedtobeunderstood.,Formostopticaltestinginstruments,thetestresultisthedifferencebetweenareference(unaberrated)wavefrontandatest(aberrated)wavefront.WeusuallycallthisdifferencetheOpticalPathDifference(OPD).,NotethattheOPDisthedifferencebetweenthereferencewavefrontandthetestwavefrontmeasuredalongtheray.,1.1SignConvention,TheOPDispositiveiftheaberratedwavefrontleadstheidealwavefront.Inotherword,apositiveaberrationwillfocusinfrontoftheparaxial(Gaussian)imageplane.,RightHandedCoordinates:ZaxisisthelightpropagationdirectionXaxisisthemeridionalortangentialdirectionYaxisisthesagittaldirection,Thedistanceispositiveifmeasuredfromlefttoright.TheangleispositiveifitisincounterclockwisedirectionrelativetoZaxis.,Sincemostopticalsystemsarerotationallysymmetric,usingpolarcoordinateismoreconvenient.,x=cosy=sin,1.2AberrationFreeSystem,Iftheopticalsystemisunaberratedordiffraction-limited,forapointobjectatinfinitytheimagewillnotbea“point”,butanAiryDisk.ThedistributionoftheirradianceontheimageplaneofAiryDiskiscalledPointSpreadFunctionorPSF.SincePSFisverysensitivetoaberrationsitisoftenusedasanindicatoroftheopticalperformance.,DiametertothefirstzeroringiscalledthediameterofAiryDisk,:workingwavelengthF#:fnumberofthesystem,Finiteconjugate,NA:numericalApertureNA=nsinu,F#W:WorkingFnumber,Ruleofthumb:forvisiblelight,0.5m,DAiryF#inmicrons,x,y:coordinatesmeasuredintheexitpupilx0,y0:coordinatesmeasuredinthefocalplaneI0:intensityofincidentwavefront(constant):wavelengthofincidentwavefrontf:focallengthoftheopticalsystemA:amplitudeintheexitpupil(x,y):thephasetransmissionfunctionintheexitpupil,Foraberrationfreesystem,thePSFwillbethesquareoftheabsoluteoftheFouriertransformofacircularapertureanditisgivenintheformof1storderBesselfunction.,Thefractionofthetotalenergycontainedinacircleofradiusraboutthediffractionpatterncenterisgivenby:,r,AngularResolution-RayleighCriterion,Generallyamirrorsystemwillhaveacentralobscuration.Ifeistheratioofthediameterofthecentralobscurationtothemirrordiameterd,andiftheentirecircularmirrorofdiameterdisuniformlyilluminated,thepowerperunitsolidangleisgivenby,isinlp/mm,TheCut-Offfrequencyofanopticalsystemis:,Features:MirrorsalignedonaxisAdvantages:SimpleandachromaticDisadvantages:CentralobscurationandlowerMTFSmallerFOVwithlongfocallength,ObscuredSystem,UnobscuredSystem,Features:MirrorsalignedoffaxisAdvantages:NoobscurationandhigherMTF;LargerFOVwithlongfocallengthAchromaticDisadvantages:Difficulttomanufactureandassembly,1.3SphericalWavefront,DefocusandLateralShift,AperfectlenswillproduceinitsexitpupilasphericalwavefrontconvergingtoapointadistanceRfromtheexitpupil.Thesphericalwavefrontequationis:,Sagequation,Defocus,Originalwavefront:,Newwavefront:,Defocusterm,IncreasingtheOPDmovesthefocustowardtheexitpupilinthenegativeZdirection.Inotherword,iftheimageplaneisshiftedalongtheopticalaxistowardthelensanamountz(zisnegative),achangeinthewavefrontrelativetotheoriginalsphericalwavefrontis:,DepthofFocus,Ruleofthumb:forvisiblelight,0.5m,Z(F#)2inmicrons,ByuseofRayleighCriterion:,ThesmallertheF#,orthelargertherelativeaperture,thesmallertheDepthofFocus,sotheharderthealignment.,Lateral(Transverse)Shift,InsteadofshiftingthecenterofcurvaturealongZaxis,wemoveitalongXaxis,then:,Forthesamereason,ifmovealongYaxis,then:,Ageneralsphericalwavefront:,Thisequationrepresentsasphericalwavefrontwhosecenterofcurvatureislocatedatthepoint(X,Y,Z).,TheOPDis:,Thisthreetermsareadditiveforthemisalignment,someorallofthemshouldberemovedfromthetestresultfordifferenttestconfigurations.,1.4TransverseandLongitudinalAberration,Ingeneral,thewavefrontintheexitpupilisnotaperfectspherebutanaberratedsphere,sodifferentpartsofthewavefrontcometothefocusindifferentplaces.Itisoftendesirabletoknowwherethesefocuspointsarelocated,i.e.,find(x,y,z)asafunctionof(x,y).,WavefrontaberrationisthedepartureofactualwavefrontfromreferencewavefrontalongtheRAY.,1.5SeidelAberrations,Inarealopticalsystem,theformofthewavefrontaberrationscanbeextremlycomplexduetotherandomerrorsindesign,fabricationandalignment.AccordingtoWelford,thiswavefrontaberrationcanbeexpressedasapowerseriesof(h,x,y):,a3termgivesrisetothephaseshiftoverthatisconstantacrosstheexitpupil.Itdoesntchangetheshapeofthewavefrontandhasnoeffectontheimage,usuallycalledPiston.b1tob5termshavefourthdegreeforh,x,ywhenexpressedaswavefrontaberrationorthirddegreeastransverseaberration,usuallycalledfourth-orderorthirdorderaberrations.,h:fieldcoordinatesx,y:coordinatesatexitpupil,Iflooktheopticalsystemfromtherearend,weseeexitpupilplaneandimageplane.,WavefrontAberrationExpansion,ClassicalSeidelAberrations,Whatdoaberrationslooklike?,FieldCurvature,Wheredoaberrationscomefrom?,Distortion,Astigmatism,W222,Coma,W131,WarrenSmith,ModernOpticalEngineering,P65,SphericalAberration,W=W0404,+,W=W0404,W=W0202,W=-1W0202+W0404,SphericalAberration+Defocus,Through-focusDiffractionImage(WithSphericalAberration),Wavefrontmeasurementusinganinterferometeronlyprovidesdataatasinglefieldpoint(oftenonaxis).Thiscausesfieldcurvaturetolooklikefocusanddistortiontolookliketilt.Therefore,anumberoffieldpointsmustbemeasuredtodeterminetheSeidelaberration.Whenperformingthetestonaxis,comashouldnotbepresent.Ifcomaispresentonaxis,itmightresultfromtiltor/anddecenteredopticalcomponentsinthesystemduetomisalignment.Acommonerrorinmanufacturingopticalsurfacesisforasurfacetobeslightlycylindricalinsteadofperfectlyspherical.Astigmatismmightbeseenonaxisduetomanufacturingerrorsorimpropersupportingstructure.,Importanttoknow,Caustic,Specifiesthesizeofaberration,Basicformofaberration,Theaberrationsofagivenopticalsystemdependonthesystemparameterssuchasaperturediameter,focallength,andfieldangle,aswellassomespecificconfigurationsofthesystem.,1.6AberrationCoefficients,TheLagrangeInvariant,TheLagrangeInvariantholdsatanyplanebetweenobjectandimage.,=,Forobjectatinfinity:,ParaxialRayTracing,SnellsLaw,L=,SeidelCoefficientTable,SeidelCoefficientCalculationforaSinglelet,CalculationbyZemax,CalculationbySeidelCoefficientFormula,TheThinLensForm,Theaberrationsofagivenopticalsystemdependonthesystemparameterssuchasaperturediameter,focallength,andfieldangle,aswellassomespecificconfigurationsofthesystem.Thesystemparameterscanbefactoredoutoftheaberrationcoefficients,leavingremainingfactorswhichdependonlyupontheconfigurationofthesystem.Theseremainingfactorswewillcallthestructuralaberrationcoefficients.,TheStructureAberrationCoefficient,RolandV.Shack,TheThinLensBending,Itispossibletohaveasetoflenseswiththesamepowerandthesamethicknessbutwithdifferentshapes.,X:,Minimumsphericalaberration,IfYisconstant,then,Ifobjectatinfinity,Y=1,n=1.5,then,Minimumcoma,Ifobjectatinfinity,Y=1,n=1.5,then,Forobjectatinfinity,stopatthinlens,whenlenspowerisfixed:,ZemaxResult,CalculationUsingThinLensForm,Forobjectatinfinity:,=,Forthinlensisinair,n=1,rearrangethethinlensformula:,1.7ZernikePolynomials,Ofteninopticaltesting,tobetterinterpretthetestresultsitisconvenienttoexpresswavefrontdatainpolynomialform.Zernikepolynomialsareoftenusedforthispurposesincetheycontaintermshavingthesameformsastheobservedaberrations(Zernike,1934).NearlyallcommercialdigitalinterferometersandopticaldesignsoftwaresuseZernikepolynomialstorepresentthewavefrontaberrations.,Zernikepolynomialshavesomeinterestingproperties,IfisZernikepolynomialtermsofnthdegreeandwediscusswithinaunitcircle:Thesepolynomialsareorthogonaloverthecontinuousinterioroftheunitcircle:,canbeexpressedastheproductoftwofunctions.Onedependsonlyontheradialcoordinateandtheotherdependsonlyontheangularcoordinate.nandlareeitherbothevenorbothodd.Ithasrotationalsymmetryproperty.Rotatingthecoordinatesystembyanangledoesntchangetheformofthepolynomials:,canbeexpressedas:,wheremn,l=n-2m.SoZerniketermUnmcanbeexpressedas:,Where:sinfunctionisusedforn-2m0cosfunctionisusedforn-2m0,SothewavefrontaberrationcanbeexpressedasalinearcombinationofZernikecircularpolynomialsofkthdegree:,WhereAnmisthecoefficientofZerniketermUnm.,4thZernikepolynomials,Re-orderedZernikepolynomials(first36terms),1,2,3,5,4,6,7,8,PlotsofZernikepolynomials#1#8,9,10,11,12,13,14,15,PlotsofZernikepolynomials#9#15,PlotsofZernikepolynomials#16#24,16,17,18,19,20,21,22,23,24,33,PlotsofZernikepolynomials#25#36,25,26,28,27,29,30,32,31,35,34,Zernikepolynomialsareeasilyrelatedtoclassicalaberrations.W(,)isusuallyfoundthebestleastsquaresfittothedatapoints.SinceZernikepolynomialsareorthogonalovertheunitcircle,anyoftheterms:alsorepresentsindividuallyabestleastsquaresfittothedata.Anmisindependentofeachother,sotoremovedefocusortiltweonlyneedtosettheappropriatecoefficientstozerowithoutneedingtofindanewleastsquaresfit.,AdvantagesofusingZernikepolynomials,CautionsofusingZernikepolynomials,Midorhighfrequencyerrorsmightbe“smoothedout”.ForexampletheDiamondTurnedsurfaceprofilecannotbeaccuratelyexpressedbyusingreasonablenumberofZerniketerms.Zernikepolynomialsareorthogonalonlyoverthecontinuousinteriorofanunitcircle,generallynotorthogonaloverthediscretesetofdatapointswithinaunitcircleoranyotherapertureshape.,RelationshipBetweenZernikepolynomialsandSeidelAberrations,Thefirst9Zernikepolynomialsareexpressedas:,ThesameaberrationcanbeexpressedinSeidelform:,Usingtheidentity:,1.8PeaktoValleyandRMSWavefrontAberration,PeaktoValley(PV)issimplythemaximumdepartureoftheactualwavefrontfromthedesiredwavefrontinbothpositiveandnegativedirections.WhileusingPVtospecifythewavefronterrorisconvenientandsimple,butitcanbemisleading.Ittellsnothingaboutthewholeareaoverwhich

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论