已阅读5页,还剩18页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2019届江苏省百校联考高三数学试题一、填空题1设全集,集合,则集合_.【答案】【解析】分别解得集合A与集合B的补集,再由集合交集的运算法则计算求得答案.【详解】由题可知,集合A中集合B的补集,则故答案为:【点睛】本题考查集合的交集与补集运算,属于基础题.2已知双曲线的一条渐近线经过点,则该双曲线的离心率为_.【答案】【解析】根据双曲线方程,可得渐近线方程,结合题意可表示,再由双曲线a,b,c关系表示,最后结合双曲线离心率公式计算得答案.【详解】因为双曲线为,所以该双曲线的渐近线方程为.又因为其一条渐近线经过点,即,则,由此可得.故答案为:.【点睛】本题考查由双曲线的渐近线构建方程表示系数关系进而求离心率,属于基础题.3各项均为正数的等比数列中,为其前项和,若,且,则公比的值为_.【答案】【解析】将已知由前n项和定义整理为,再由等比数列性质求得公比,最后由数列各项均为正数,舍根得解.【详解】因为即又等比数列各项均为正数,故故答案为:【点睛】本题考查在等比数列中由前n项和关系求公比,属于基础题.4下表是关于青年观众的性别与是否喜欢综艺“奔跑吧,兄弟”的调查数据,人数如下表所示:不喜欢喜欢男性青年观众4010女性青年观众3080现要在所有参与调查的人中用分层抽样的方法抽取个人做进一步的调研,若在“不喜欢的男性青年观众”的人中抽取了8人,则的值为_.【答案】32【解析】由已知可得抽取的比例,计算出所有被调查的人数,再乘以抽取的比例即为分层抽样的样本容量.【详解】由题可知,抽取的比例为,被调查的总人数为人,则分层抽样的样本容量是人.故答案为:32【点睛】本题考查分层抽样中求样本容量,属于基础题.5根据如图所示的伪代码,输出的值为_.【答案】7【解析】表示初值S=1,i=1,分三次循环计算得S=100,输出i=7.【详解】S=1,i=1第一次循环:S=1+1=2,i=1+2=3;第二次循环:S=2+3=5,i=3+2=5;第三次循环:S=5+5=10,i=5+2=7;S=109,循环结束,输出:i=7.故答案为:7【点睛】本题考查在程序语句的背景下已知输入的循环结构求输出值问题,属于基础题.6甲,乙两队参加关于“一带一路”知识竞赛,甲队有编号为1,2,3的三名运动员,乙队有编号为1,2,3,4的四名运动员,若两队各出一名队员进行比赛,则出场的两名运动员编号相同的概率为_.【答案】【解析】出场运动员编号相同的事件显然有3种,计算出总的基本事件数,由古典概型概率计算公式求得答案.【详解】甲队有编号为1,2,3的三名运动员,乙队有编号为1,2,3,4的四名运动员,出场的两名运动员编号相同的事件数为3,出现的基本事件总数,则出场的两名运动员编号相同的概率为.故答案为:【点睛】本题考查求古典概率的概率问题,属于基础题.7函数的定义域为_.【答案】【解析】对数函数的定义域需满足真数大于0,再由指数型不等式求解出解集即可.【详解】对函数有意义,即.故答案为:【点睛】本题考查求对数函数的定义域,还考查了指数型不等式求解,属于基础题.8设满足约束条件,则的取值范围是_.【答案】【解析】作出可行域,将目标函数整理为可视为可行解与的斜率,则由图可知或,分别计算出与,再由不等式的简单性质即可求得答案.【详解】作出满足约束条件的可行域,显然当时,z=0;当时将目标函数整理为可视为可行解与的斜率,则由图可知或显然,联立,所以则或,故或综上所述,故答案为:【点睛】本题考查分式型目标函数的线性规划问题,属于简单题.9将函数的图象向右平移个单位长度后得到函数的图象,则函数的最大值为_.【答案】【解析】由三角函数图象相位变换后表达函数解析式,再利用三角恒等变换与辅助角公式整理的表达式,进而由三角函数值域求得最大值.【详解】将函数的图象向右平移个单位长度后得到函数的图象,则所以,当函数最大,最大值为故答案为:【点睛】本题考查表示三角函数图象平移后图象的解析式,还考查了利用三角恒等变换化简函数式并求最值,属于简单题.10如图,在直四棱柱中,底面是平行四边形,点是棱的中点,点是棱靠近的三等分点,且三棱锥的体积为2,则四棱柱的体积为_【答案】12【解析】由题意,设底面平行四边形的,且边上的高为,直四棱柱的高为,分别表示出直四棱柱的体积和三棱锥的体积,即可求解。【详解】由题意,设底面平行四边形的,且边上的高为,直四棱柱的高为,则直四棱柱的体积为,又由三棱锥的体积为,解得,即直四棱柱的体积为。【点睛】本题主要考查了棱柱与棱锥的体积的计算问题,其中解答中正确认识几何体的结构特征,合理、恰当地表示直四棱柱三棱锥的体积是解答本题的关键,着重考查了推理与运算能力,以及空间想象能力,属于中档试题。11在面积为的中,若点是的中点,点满足,则的最大值是_.【答案】【解析】由任意三角形面积公式与构建关系表示|AB|AC|,再由已知与平面向量的线性运算、平面向量数量积的运算转化,最后由重要不等式求得最值.【详解】由ABC的面积为得|AB|AC|sinBAC=,所以|AB|AC|sinBAC=,又,即|AB|AC|cosBAC=,由与的平方和得:|AB|AC|=,又点M是AB的中点,点N满足,所以,当且仅当时,取等号,即的最大值是为.故答案为:【点睛】本题考查平面向量中由线性运算表示未知向量,进而由重要不等式求最值,属于中档题.12在平面直角坐标系中,已知圆及点,设点是圆上的动点,在中,若的角平分线与相交于点,则的取值范围是_.【答案】【解析】由角平分线成比例定理推理可得,进而设点表示向量构建方程组表示点P坐标,代入圆C方程即可表示动点Q的轨迹方程,再由将所求视为该圆上的点与原点间的距离,所以其最值为圆心到原点的距离加减半径.【详解】由题可构建如图所示的图形,因为AQ是的角平分线,由角平分线成比例定理可知,所以.设点,点,即,则,所以.又因为点是圆上的动点,则,故点Q的运功轨迹是以为圆心为半径的圆,又即为该圆上的点与原点间的距离,因为,所以故答案为:【点睛】本题考查与圆有关的距离的最值问题,常常转化到圆心的距离加减半径,还考查了求动点的轨迹方程,属于中档题.13已知函数,若关于的方程在定义域上有四个不同的解,则实数的取值范围是_.【答案】【解析】由题意可在定义域上有四个不同的解等价于关于原点对称的函数与函数的图象有两个交点,运用参变分离和构造函数,进而借助导数分析单调性与极值,画出函数图象,即可得到所求范围.【详解】已知定义在上的函数若在定义域上有四个不同的解等价于关于原点对称的函数与函数f(x)=lnx-x(x0)的图象有两个交点,联立可得有两个解,即可设,则,进而且不恒为零,可得在单调递增.由可得时,单调递减;时,单调递增,即在处取得极小值且为作出的图象,可得时,有两个解.故答案为:【点睛】本题考查利用利用导数解决方程的根的问题,还考查了等价转化思想与函数对称性的应用,属于难题.14如图,某市一学校位于该市火车站北偏东方向,且,已知是经过火车站的两条互相垂直的笔直公路,CE,DF及圆弧都是学校道路,其中,以学校为圆心,半径为的四分之一圆弧分别与相切于点.当地政府欲投资开发区域发展经济,其中分别在公路上,且与圆弧相切,设,的面积为.(1)求关于的函数解析式;(2)当为何值时,面积为最小,政府投资最低?【答案】(1);(2).【解析】(1)以点为坐标原点建立如图所示的平面直角坐标系,则,在中,设,又,故,进而表示直线的方程,由直线与圆相切构建关系化简整理得,即可表示OA,OB,最后由三角形面积公式表示面积即可;(2)令,则,由辅助角公式和三角函数值域可求得t的取值范围,进而对原面积的函数用含t的表达式换元,再令进行换元,并构建新的函数,由二次函数性质即可求得最小值.【详解】解:(1)以点为坐标原点建立如图所示的平面直角坐标系,则,在中,设,又,故,.所以直线的方程为,即.因为直线与圆相切,所以.因为点在直线的上方,所以,所以式可化为,解得.所以,.所以面积为.(2)令,则,且,所以,.令,所以在上单调递减.所以,当,即时,取得最大值,取最小值.答:当时,面积为最小,政府投资最低.【点睛】本题考查三角函数的实际应用,应优先结合实际建立合适的数学模型,再按模型求最值,属于难题.二、解答题15设复数满足(为虚数单位),则的模为_.【答案】1【解析】整理已知利用复数的除法运算方式计算,再由求模公式得答案.【详解】因为,即所以的模为1故答案为:1【点睛】本题考查复数的除法运算与求模,属于基础题.16如图,四棱锥的底面ABCD是正方形,为等边三角形,M,N分别是AB,AD的中点,且平面平面ABCD.(1)证明:平面PNB;(2)问棱PA上是否存在一点E,使平面DEM,求的值【答案】(1)证明见解析;(2)存在,.【解析】(1)根据题意证出,再由线面垂直的判定定理即可证出.(2)连接AC交DM于点Q,连接EQ,利用线面平行的性质定理可得,从而可得,在正方形ABCD中,由即可求解.【详解】(1)证明:在正方形ABCD中,M,N分别是AB,AD的中点,.又,.为等边三角形,N是AD的中点,.又平面平面ABCD,平面PAD,平面平面,平面ABCD.又平面ABCD,.平面PNB,平面PNB.(2)解:存在.如图,连接AC交DM于点Q,连接EQ.平面DEM,平面PAC,平面平面,.在正方形ABCD中,且.,.故.所以棱PA上存在点E,使平面DEM,此时,E是棱A的靠近点A的三等分点.【点睛】本题考查了线面垂直的判定定理、线面平行的性质定理,考查了学生的推理能力以及空间想象能力,属于空间几何中的基础题.17在中,是边上一点,且,.(1)求的长;(2)若的面积为14,求的长.【答案】(1)1;(2)5.【解析】(1)由同角三角函数关系求得,再由两角差的正弦公式求得,最后由正弦定理构建方程,求得答案.(2)在中,由正弦定理构建方程求得AB,再由任意三角形的面积公式构建方程求得BC,最后由余弦定理构建方程求得AC.【详解】(1)据题意,且,所以.所以.在中,据正弦定理可知,所以.(2)在中,据正弦定理可知,所以.因为的面积为14,所以,即,得.在中,据余弦定理可知,所以.【点睛】本题考查由正弦定理与余弦定理解三角形,还考查了由同角三角函数关系和两角差的正弦公式化简求值,属于简单题.18如图,已知椭圆经过点,且离心率,过右焦点且不与坐标轴垂直的直线与椭圆相交于两点.(1)求椭圆的标准方程;(2)设椭圆的右顶点为,线段的中点为,记直线的斜率分别为,求证:为定值.【答案】(1);(2)详见解析.【解析】(1)由椭圆离心率、系数关系和已知点坐标构建方程组,求得,代入标准方程中即可;(2)依题意,直线的斜率存在,且不为0,设其为,则直线的方程为,设,通过联立直线方程与椭圆方程化简整理和中点的坐标表示用含k的表达式表示,进而表示;由韦达定理表示根与系数的关系进而表示用含k的表达式表示,最后做比即得证.【详解】(1)设椭圆的焦距为,则,即,所以.依题意,即,解得,所以,.所以椭圆的标准方程为.(2)证明:依题意,直线的斜率存在,且不为0,设其为,则直线的方程为,设,.与椭圆联立整理得,故所以,所以.又,所以为定值,得证.【点睛】本题考查由离心率求椭圆的标准方程,还考查了椭圆中的定值问题,属于较难题.19已知函数,其中.(1)函数在处的切线与直线垂直,求实数的值;(2)若函数在定义域上有两个极值点,且.求实数的取值范围;求证:.【答案】(1);(2);详见解析.【解析】(1)由函数在处的切线与直线垂直,即可得,对其求导并表示,代入上述方程即可解得答案;(2)已知要求等价于在上有两个根,且,即在上有两个不相等的根,由二次函数的图象与性质构建不等式组,解得答案,最后分析此时单调性推及极值说明即可;由可知,是方程的两个不等的实根,由韦达定理可表达根与系数的关系,进而用含的式子表示,令,对求导分析单调性,即可知道存在常数使在上单调递减,在上单调递增,进而求最值证明不等式成立.【详解】解:(1)依题意,故,所以,据题意可知,解得.所以实数的值为.(2)因为函数在定义域上有两个极值点,且,所以在上有两个根,且,即在上有两个不相等的根.所以解得.当时,若或,函数在和上单调递增;若,函数在上单调递减,故函数在上有两个极值点,且.所以,实数的取值范围是.由可知,是方程的两个不等的实根,所以其中.故,令,其中.故,令,在上单调递增.由于,所以存在常数,使得,即,且当时,在上单调递减;当时,在上单调递增,所以当时,又,所以,即,故得证.【点睛】本题考查导数的几何意义、两直线的位置关系、由极值点个数求参数范围问题,还考查了利用导数证明不等式成立,属于难题.20已知正项数列的前项和.(1)若数列为等比数列,求数列的公比的值;(2)设正项数列的前项和为,若,且.求数列的通项公式;求证:.【答案】(1);(2);详见解析.【解析】(1)依题意可表示,相减得,由等比数列通项公式转化为首项与公比,解得答案,并由其都是正项数列舍根; (2)由题意可表示,两式相减得,由其都是正项并整理可得递推关系,由等差数列的通项公式即可得答案;由已知关系,表示并相减即可表示递推关
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- (人教A版)必修二高一数学下学期同步空间直线平面的平行测试题(原卷版)
- 高中历史人教统编版选择性必修1 国家制度与社会治理第2课 西方国家古代和近代政治制度的演变教案
- 2025年放疗病人护理题目及答案
- 公司法律人才选拔面试实战案例分析报告
- 关于经济招聘的深度分析报告
- 2025年健康教育教程试题答案
- 冶金工程师冶金废弃物处理方案
- 企业内训师培训资料制作与教学方法
- 区块链工程师项目风险评估报告
- 2025年营销员测试题(含参考答案)
- 铲车堆场服务技术方案
- 介绍哈萨克族的课件
- 横断面计算Excel土方断面速算表
- 15D502 等电位联结安装
- 11《答谢中书书》知识点整理
- 创意的表达 课件-2023-2024学年高中通用技术地质版(2019)必修《技术与设计1 》
- 九年级数学期中考试质量分析【精选】
- 基于BIM基数的机电安装工程降本提质增效
- GB/T 10003-2008普通用途双向拉伸聚丙烯(BOPP)薄膜
- 高位自卸汽车设计计算说明书-毕业设计
- BOSA测试培训课件
评论
0/150
提交评论