R软件计算题--统计学专业_第1页
R软件计算题--统计学专业_第2页
R软件计算题--统计学专业_第3页
R软件计算题--统计学专业_第4页
R软件计算题--统计学专业_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

.,例4.15P179(一个正态总体的区间估计)为估计一件物体的重量a,将其称了10次,得到的重量(单位:kg)为10.1,10,9.8,10.5,9.7,10.1,9.9,10.2,10.3,9.9,假设所称出物体重量服从正态分布求该物体重量a的置信系数为0.95的置信区间。,x-c(10.1,10,9.8,10.5,9.7,10.1,9.9,10.2,10.3,9.9)t.test(x)程序结果:OneSamplet-testdata:xt=131.59,df=9,p-value=4.296e-16alternativehypothesis:truemeanisnotequalto095percentconfidenceinterval:9.87722510.222775sampleestimates:meanofx10.05得到的区间估计为:9.88,10.22,.,例4.18P185(均值差的区间估计)现从生产线上随机抽取样本x1,x2,x12和y1,y2,y17,都服从正态分布,其均值分别为u1=201.1,u2=499.7,标准差分别为2.4,4.7。给定置信系数0.95,试求u1-u2的区间估计。,x-rnorm(12,501.1,2.4)y-rnorm(17,499.7,4.7)两样本方差不同t.test(x,y)程序结果:WelchTwoSamplet-testdata:xandyt=-0.6471,df=25.304,p-value=0.5234alternativehypothesis:truedifferenceinmeansisnotequalto095percentconfidenceinterval:-3.6571211.907620sampleestimates:meanofxmeanofy500.7888501.6635u1-u2的置信系数为0.95的区间估计为-3.66,1.91方差相同t.test(x,y,var.equal=TRUE),.,例4.19P186(配对数据情形下均值差的区间估计)抽查患者10名。记录下治疗前后血红蛋白的含量数据。试求治疗前后变化的区间估计。(a=0.05)。,x-c(11.3,15.0,15.0,13.5,12.8,10.0,11.0,12.0,13.0,12.3)y-c(14.0,13.8,14.0,13.5,13.5,12.0,14.7,11.4,13.8,12.0)t.test(x-y)程序结果:OneSamplet-testdata:x-yt=-1.3066,df=9,p-value=0.2237alternativehypothesis:truemeanisnotequalto095percentconfidenceinterval:-1.85728810.4972881sampleestimates:meanofx-0.68治疗前后变化的区间估计为-1.86,0.497,.,例4.22P193(一个总体求均值的单侧置信区间估计)从一批灯泡中随机地取5只作寿命试验测得寿命以小时计为10501100112012501280设灯泡的寿命服从正态分布.求灯泡寿命平均值的置信度为0.95的单侧置信下限,x-c(1050,1100,1120,1250,1280)t.test(x,alternative=greater)程序结果:OneSamplet-testdata:xt=26.003,df=4,p-value=6.497e-06alternativehypothesis:truemeanisgreaterthan095percentconfidenceinterval:1064.9Infsampleestimates:meanofx116095%的灯泡寿命在1064.9小时以上,.,习题4.6P201甲、乙两种稻种分布播种在10块试验田中,每块试验田甲、乙稻种各种一半,假设两稻种产量X,Y均服从正态分布,且方差相等,收获后10块试验田的产量如下所示(单位:千克)。求出两稻种产量的期望差u1-u2的置信区间(a=0.05).,x-c(140,137,136,140,145,148,140,135,144,141)y-c(135,118,115,140,128,131,130,115,131,125)t.test(x,y,var.equal=T)程序结果TwoSamplet-testdata:xandyt=4.6287,df=18,p-value=0.0002087alternativehypothesis:truedifferenceinmeansisnotequalto095percentconfidenceinterval:7.53626120.063739sampleestimates:meanofxmeanofy140.6126.8置信区间为7.536261,20.063739,.,习题4.7甲、乙两组生产同种导线,现从甲组生产的导线中随机抽取4根,从乙组生产的导线中随机抽取5根,它们的电阻值分别为:甲:0.143,0.142,0.143,0.137;乙:0.140,0.142,0.136,0.138,0.140;假设两组电阻值分别服从正态分布,方差相同但未知,试求u1-u2的置信系数为0.95的区间估计。,x-c(0.143,0.142,0.143,0.137)y-c(0.140,0.142,0.136,0.138,0.140)a-rnorm(4,mean(x),var(x)b-rnorm(5,mean(y),var(y)t.test(a,b)程序结果:WelchTwoSamplet-testdata:aandbt=636.28,df=5.788,p-value=3.028e-15alternativehypothesis:truedifferenceinmeansisnotequalto095percentconfidenceinterval:0.0020414400.002057343sampleestimates:meanofxmeanofy0.14124940.1392000区间为:0.00204,0.00205,.,例5.2P209(单个正态总体均值的假设检验)某种元件的寿命X(小时),服从正态分布,其中f方差和均值均未知,16只元件的寿命如下:问是否有理由认为元件的平均寿命大于255小时。,x-c(159,280,101,212,224,379,179,264,222,362,168,250,149,260,485,170)t.test(x,alternative=greater,mu=225)程序结果:OneSamplet-testdata:xt=0.66852,df=15,p-value=0.257alternativehypothesis:truemeanisgreaterthan22595percentconfidenceinterval:198.2321Infsampleestimates:meanofx241.5计算出P值为0.257大于0.05,所以,接受原假设,即认为元件的平均寿命不大于255小时,.,例5.6P221(二项分布总体的假设检验)有一批蔬菜种子的平均发芽率为P=0.85,现在随机抽取500粒,用种衣剂进行浸种处理,结果有445粒发芽,问种衣剂有无效果。,binom.test(445,500,p=0.85)程序结果:Exactbinomialtestdata:445and500numberofsuccesses=445,numberoftrials=500,p-value=0.01207alternativehypothesis:trueprobabilityofsuccessisnotequalto0.8595percentconfidenceinterval:0.85923420.9160509sampleestimates:probabilityofsuccess0.89P值=0.012070.05,拒绝原假设,认为种衣剂对种子发芽率有显著效果。,.,习题5.1P249正常男子血小板计数均值为225*109/L,今测得20名男性油漆作业工人的血小板计数值如下。问油漆工人的血小板计数与正常成年男子有无差异?,x-c(220,188,162,230,145,160,237,188,247,113,126,245,164,231,250,183,190,158,224,175)t.test(x,alternative=two.side,mu=225)程序结果:OneSamplet-testdata:xt=-3.5588,df=19,p-value=0.002096alternativehypothesis:truemeanisnotequalto22595percentconfidenceinterval:172.2743211.3257sampleestimates:meanofx191.8P值=0.0020960.05,拒绝原假设,认为油漆工人的血小板计数与正常成年男子有差异。,.,习题5.3为研究某铁剂治疗和饮食治疗营养性缺铁性贫血的效果,将16名患者按年龄、体重、病程和病情相近的原则配成8对,分别使用饮食疗法和补充铁剂治疗的方法,三个月后测得两种患者血红蛋白如表5.1所示,问两种方法治疗后的患者血红蛋白有无差异.,x0.05,接受原假设,两种方法治疗后的患者血红蛋白无差异,.,例6.2P257(回归方程的显著性检验)求例6.1的回归方程,并对相应的方程做检验。,x-c(0.1,0.11,0.12,0.13,0.14,0.15,0.16,0.17,0.18,0.20,0.21,0.23)y-c(42.0,43.5,45.0,45.5,45.0,47.5,49.0,53.0,50.0,55.0,55.0,60.0)lm.sol|t|)(Intercept)28.4931.58018.045.88e-09*x130.8359.68313.519.50e-08*-Signif.codes:0*0.001*0.01*0.05.0.11Residualstandarderror:1.319on10degreesoffreedomMultipleR-squared:0.9481,AdjustedR-squared:0.9429F-statistic:182.6on1and10DF,p-value:9.505e-08,.,例6.4P260(预测)求例6.1中X=x0=0.16时相应的Y的概率为0.95的预测区间,new-data.frame(x=0.16)lm.pred-predict(lm.sol,new,interval=prediction,level=0.95)lm.pred程序结果:fitlwrupr49.4263946.3662152.48657预测值为49.43,预测区间46.37,52.49,.,例6.5P261(全面展示一元回归模型的计算过程)Forbes数据,X-matrix(c(194.5,20.79,1.3179,131.79,194.3,20.79,1.3179,131.79,197.9,22.40,1.3502,135.02,198.4,22.67,1.3555,135.55,199.4,23.15,1.3646,136.46,199.9,23.35,1.3683,136.83,200.9,23.89,1.3782,137.82,201.1,23.99,1.3800,138.00,201.4,24.02,1.3806,138.06,201.3,24.01,1.3805,138.05,203.6,25.14,1.4004,140.04,204.6,26.57,1.4244,142.44,209.5,28.49,1.4547,145.47,208.6,27.76,1.4434,144.34,210.7,29.04,1.4630,146.30,211.9,29.88,1.4754,147.54,212.2,30.06,1.4780,147.80),ncol=4,byrow=T,dimnames=list(1:17,c(F,h,log,log100)forbes-data.frame(X)plot(forbes$F,forbes$log100)程序结果是出现散点图,.,lm.sol|t|)(Intercept)-42.130873.33895-12.622.17e-09*F0.895460.0164554.452e-16*-Signif.codes:0*0.001*0.01*0.05.0.11Residualstandarderror:0.3789on15degreesoffreedomMultipleR-squared:0.995,AdjustedR-squared:0.9946F-statistic:2965on1and15DF,p-value:2.2e-16,.,abline(lm.sol)程序结果:得到散点图和相应的回归直线y.res|t|)(Intercept)-41.301801.00038-41.295.01e-16*F0.890960.00493180.732e-16*-Signif.codes:0*0.001*0.01*0.05.0.11Residualstandarderror:0.1133on14degreesoffreedomMultipleR-squared:0.9996,AdjustedR-squared:0.9995F-statistic:3.266e+04on1and14DF,p-value:2.2e-16,.,例6.14P292某公司为了研究产品的营销策略,对产品的销售情况进行了调查,设Y为某地区该产品的家庭人均购买量(单位:元),X为家庭收入(单位:元),表6.8给出了53个家庭的数据。试通过这些数据建立Y与X的关系。,X-scan()6792921012493582115699721891097207818181700747203016434143541276745435540874154310297101434837174813811428125517773702316113046377072480879078340612426581746468111441317873560149522211526Y-scan()0.790.440.560.792.703.644.739.505.346.855.845.213.254.433.160.500.171.880.771.390.561.565.280.644.000.314.204.883.487.582.634.990.598.194.790.511.744.103.940.963.290.443.242.145.710.641.900.518.3314.945.113.853.93,.,lm.sol|t|)(Intercept)-0.83130370.4416121-1.8820.0655.X0.00368280.000333911.0304.11e-15*-Signif.codes:0*0.001*0.01*0.05.0.11Residualstandarderror:1.577on51degreesoffreedomMultipleR-squared:0.7046,AdjustedR-squared:0.6988F-statistic:121.7on1and51DF,p-value:4.106e-15y.rst-rstandard(lm.sol);y.fit-predict(lm.sol)plot(y.rsty.fit)abline(0.1,0.5);abline(-0.1,-0.5)程序结果:画出了标准化后的残差图,.,lm.new|t|)(Intercept)5.822e-011.299e-014.4814.22e-05*X9.529e-049.824e-059.6993.61e-13*-Signif.codes:0*0.001*0.01*0.05.0.11Residualstandarderror:0.464on51degreesoffreedomMultipleR-squared:0.6485,AdjustedR-squared:0.6416F-statistic:94.08on1and51DF,p-value:3.614e-13yn.rst-rstandard(lm.new);yn.fit-predict(lm.new)plot(yn.rstyn.fit),.,习题6.1P331为估计山上积雪融化后对下游灌溉的影响,在山上建立一个观测站,测量最大积雪深度X(米)与当年灌溉面积Y(公颂),测得连续10年的数据如表6.1所示。,snow|t|)x385.515.0975.746.17e-14*-Signif.codes:0*0.001*0.01*0.05.0.11Residualstandarderror:104.6on9degreesoffreedomMultipleR-squared:0.9984,AdjustedR-squared:0.9983F-statistic:5736on1and9DF,p-value:6.169e-14,.,现测得今年的数据是X=7m,给出今年灌溉面积的预测值与相应的区间估计。(a=0.05),4)X-data.frame(x=7)lm.pred-predict(lm.sol,X,interval=prediction,level=0.95)lm.pred#拟合新数据,并生成置信区间程序结果:fitlwrup

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论