已阅读5页,还剩60页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
.,第三章SPSS数据的预处理,.,为什么要进行数据的预处理,在数据文件建立之后,通常还需要对分析的数据进行必要的预加工处理,这是数据分析过程中必不可少的一个关键步骤。数据的预加工处理服务于数据分析和建模,主要包括以下几个问题:,.,数据的排序变量计算数据选取计数分类汇总数据分组数据预处理的其他功能:转置、加权、数据拆分、缺失值处理、数据排秩、定义变量集。,预处理的内容,.,3.1数据的排序,SPSS的数据排序是将数据编辑窗口中的数据按照某个或多个指定变量的变量值升序或降序重新排列。这里的变量也称为排序变量。排序变量只有一个时,排序称为单值排序。排序变量有多个时,排序称为多重排序。多重排序中,第一个指定的排序变量称为主排序变量,其他依次指定的变量分别称为第二排序变量、第三排序变量等。,.,数据排序便于数据的浏览,有助于了解数据的取值状况、缺失值数量的多少等;通过数据排序能够快捷的找到数据的最大值和最小值,进而可以计算出数据的全距,初步把握和比较数据的离散程度;通过数据排序能够快捷地发现数据的异常值,为进一步明确它们是否会对分析产生重要影响提供帮助。,3.1.1数据排序的作用,.,SPSS数据排序的基本操作步骤(1)选择菜单数据排序个案(2)将主排序变量从左边的列表中选到“排序依据”框中,并在“排列顺序”框中选择按该变量的升序还是降序排序。(3)如果是多重排序,还要一次指定第二、第三排序变量及相应的排序规则。,3.1.2数据排序的基本操作,.,.,1、数据排序是整行数据排序,而不是只对某列变量排序;2、多重排序中指定排序变量的次序很关键。先指定的变量优先于后指定的变量。多重排序可以在按某个变量值升序(或降序)排序的同时再按其他变量值降序(或升序)排序;3、数据排序后,原有数据的排序次序必然被打乱。,说明,.,3.2变量计算,数据的转换处理是在原有数据的基础上,计算产生一些含有更丰富信息的新数据。例如根据职工的基本工资、失业保险、奖金等数据,计算实际月收入,这些新变量具有更直观更有效的特点。,.,3.2.1变量计算的目的,SPSS变量计算是在原有数据的基础上,根据用户给出的SPSS算术表达式以及函数,对所有个案或满足条件的部分个案,计算产生一系列新变量。(1)变量计算是针对所有个案(或指定的部分个案)的,每个个案都有自己的计算结果。(2)变量计算的结果应保存到一个指定变量中,该变量的数据类型应与计算结果的数据类型相一致。在变量计算过程中涉及到几个概念:SPSS算数表达式、SPSS条件表达式和SPSS函数。,.,指出按照什么方法计算变量;SPSS算术表达式是由常量、变量、算术运算符、圆括号、函数等组成的式子。字符型常量应当用引号括起来变量是指那些已存在于数据编辑窗口中的原有变量算术运算符主要包括、*、/、*(乘方)在同一算术表达式中的常量及变量,数据类型应该一致,否则无法计算,3.2.2SPSS算术表达式,.,在变量计算中通常要求对不同的个案分别按照不同的方法进行计算,于是就需要通过一定的方式来指定个案;SPSS条件表达式是一个对条件进行判断的式子。其结果有两种取值:如果判断条件成立,则结果为真;如果判断条件不成立,则结果为假。条件表达式包括简单条件表达式和复合条件表达式。,3.2.3SPSS条件表达式,.,(1)简单条件表达式由关系运算符、常量、变量以及算术表达式等组成的式子。其中关系运算符包括、。(nl35)(2)复合条件表达式又称逻辑表达式,是由逻辑运算符号、圆括号和简单条件表达式等组成的式子。其中,逻辑运算符号包括&或AND(并且)、|或OR(或者)、或NOT(非)。NOT的运算优先级最高,其次是AND,最低是OR。可以通过圆括号改变运算的优先级。(nl=35)andnot(zc3),.,SPSS函数是事先编好并存储在SPSS软件中,能够实现某些特定计算任务的一段计算机程序。这些程序都有各自的名字称为函数名。执行这些程序段得到的计算结果称为函数值。函数书写的具体形式为:函数名(参数),3.2.4SPSS函数,.,其中,函数名是SPSS已经规定好的,参数可以是常量(字符型常量应用引号括起来),也可以是变量或算术表达式。参数可能是一个,也可能是多个,各参数之间用逗号分隔。SPSS函数大致可以分成八大类:算术函数、统计函数、分布函数、逻辑函数、字符串函数、缺失值函数、日期函数和其他函数。,.,(1)选择菜单转换计算变量,弹出“计算变量”对话框如下:,3.2.5变量计算的基本操作,.,(2)在“目标变量”框中输入存放计算结果的变量名。该变量可以是一个新变量,也可以是已经存在的变量。如果指定存放计算结果的变量为新变量,SPSS会自动创建它;如果指定产生的变量已经存在,SPSS会提问是否以计算结果覆盖原有值。新的变量默认为数值型,用户可以根据需要单击【类型与标签】按钮修改,还可以对新变量加变量名标签。(3)在“数字表达式”框给出SPSS算术表达式。可以手工输入,也可以按窗口的按钮以及函数下拉菜单输入。,.,(4)如果希望对符合一定条件的个案进行变量计算,则单击【如果】按钮,出现下面的窗口,选择【如果个案满足条件则包括】选项,然后输入条件表达式。对不满足条件的个案,将不进行变量值计算,对新变量取值为系统缺失值。,.,3.3数据选取,数据选取就是根据分析的需要,从已收集到的大批量数据(总体)中按照一定的规则抽取部分数据(样本)参与分析的过程,通常也称为抽样。SPSS可根据指定的抽样方法从数据编辑窗口中选出部分样本以实现数据选取,这样后面的分析操作就只针对选出的数据,直到用户取消这种选取为止。,.,(1)选取全部数据(2)按指定条件选取SPSS要求用户以条件表达式给出数据选取的条件,SPSS将自动对数据编辑窗口中的所有个案进行条件判断。那些满足条件的个案,即条件判断为真的个案将被自动选取出来,而那些条件判断为假的个案则不被选中。,3.3.1数据选取的基本方式,.,(3)随机抽样,即对数据编辑窗口中的所有个案进行随机筛选,包括如下两种方式:第一,近似抽样近似抽样要求用户给出一个百分比数值,SPSS将按照这个比例自动从数据编辑窗口中随机抽取相应百分比数目的个案。注:由于SPSS在样本抽样方面的技术特点,抽取出的个案总数不一定恰好精确地等于用户指定的百分比数目,会有小的偏差,因而称为近似抽样。,.,第二,精确抽样精确抽样要求用户给出两个参数。第一个参数是希望选取的个案数,第二个参数是指定在前几个个案中选取。SPSS自动在数据编辑窗口的前若干个个案中随机精确地抽出相应个数的个案来。,.,(4)选取某一区域内的样本,即选取数据编辑窗口中样本号在指定范围内的所有个案,要求给出这个范围的上、下界个案号码。这种抽样方法适用于时间序列数据。(5)通过过滤变量选取样本,即依据过滤变量的取值进行样本选取。要求指定一个变量作为过滤变量,变量值为非0或非系统缺失值的个案将被选中。这种方法通常用于排除包含系统缺失值的个案。,.,说明:(1)完成数据选取后,以后的SPSS分析操作仅针对那些被选中的个案直到用户再次改变数据的选取为止。(2)采用指定条件选取和随机抽样方法进行数据选取后,SPSS将在数据编辑窗口中自动生成一个名为filter_$的新变量,取值为1或0。1表示本个案被选中,0表示未被选中。该变量是SPSS产生的中间变量,如果删除它则自动取消样本抽样。,.,(1)选择菜单数据选择个案(2)根据分析需要选择数据选取方法(3)“不筛选个案”指定对未选中个案的处理方式“过滤掉未选定的个案”表示在未被选中的个案号码上打一个“/”标记;“删除未选定个案”表示将未被选中的个案从数据编辑窗口中删除。,3.3.2数据选取的基本操作,.,“选择个案”对话框,.,3.4计数,3.4.1计数目的SPSS实现的计数是对所有个案或满足某条件的部分个案,计算若干变量中有几个变量的值落在指定的区间内,并将计数结果存入一个新变量中的过程。例如对大学毕业班学生的成绩进行综合测评时,可以依次计算每个学生的若干门课程中有几门课程得了优,有几门课程得了良,有几门课程不及格。SPSS实现计数的关键步骤是:指定哪些变量参与计数,计数的结果存入哪个新变量中指定计数区间(尤为关键),.,SPSS中的计数区间可以有以下几种描述形式:单个变量值系统缺失值系统缺失值或用户缺失值给定最大值和最小值的区间小于等于某指定值的区间大于等于某指定值的区间,3.4.2计数区间,.,上述后三个计数区间很容易理解。例如评价学生成绩,成绩为优的计数区间可以指定为“从90最低到值”,成绩为良的计数区间指定为80到89,不及格的计数区间指定为从“59最高到值”。前三个计数区间实际上是一些离散的数据点,严格讲并不是区间,但SPSS仍将其归在广义区间的范畴内,目的是方便一些其他的应用。,.,(1)选择菜单转换对个案内的值计数,出现如下窗口:,3.4.3计数的基本操作,.,(2)将参与计数的变量选到“变量”框中(3)在“目标变量”框中输入存放计数结果的变量名,并在“目标标签”框中输入相应的变量名标签。(4)单击【定义值】按钮定义计数区间,出现如下图窗口:,.,通过单击【添加】、【更正】、【删除】按钮完成计数区间的增加、修改和删除。,.,(5)如果仅希望对满足某条件的个案进行计数,则单击【如果】按钮并输入相应的SPSS条件表达式。否则,本步可略去。,.,3.5分类汇总,3.5.1分类汇总的目的分类汇总是按照某分类变量进行分类汇总计算。例如:某企业希望了解本企业不同学历职工的基本工资上是否存在较大差距。最简单的做法就是分类汇总,即将职工按学历进行分类,分别计算不同学历职工的平均工资,然后可对平均工资进行比较。,.,再例如,某商厦希望分析假日周内不同职业和不同年龄段的顾客对某商品的“打折促销”反应是否存在较大差异,用以分析不同消费群体的消费心理。最初步的分析可以是分别计算不同职业中不同年龄段顾客的平均消费金额和平均消费金额差异程度(标准差),并对它们进行比较。这个过程也可以通过分类汇总过程完成。,.,SPSS实现分类汇总涉及两个主要方面:按照哪个变量(如上例中的学历、职业和年龄段)进行分类对哪个变量(如上例中的基本工资、消费金额)进行汇总,并指定对汇总变量计算哪些统计量(如上例中的平均工资、平均消费金额和标准差),.,(1)选择菜单数据分类汇总,出现如下所示的窗口:,3.5.2分类汇总的基本操作,.,(2)将分类变量选到“分组变量”框中(3)将汇总变量选到“变量摘要”框中(4)单击【函数】按钮,指定对汇总变量计算哪些统计量。SPSS默认计算均值。,.,(5)指定将分类汇总结果保存到何处。有三种选择:第一,“将汇总变量添加到活动数据集”,表示将结果存放到当前数据编辑窗口中。第二,“创建只包含汇总变量的新数据集”,表示将结果存放到系统默认的名为aggr.sav的SPSS数据文件中,可以单击【文件】按钮,重新指定文件名;第三,“写入只包含汇总变量的新数据文件”,表示用分类汇总结果覆盖数据编辑窗口中的数据。一般选择第二种方式,结果比较清晰。,.,(6)单击【变量名与标签】按钮,重新指定结果文件中的变量名或添加变量名标签。SPSS默认的变量名为原变量名后加_统计量名称。(7)如果希望在结果文件中保存各分类组的个案数,则选择个案数选项。于是,SPSS会在结果文件中自动生成一个默认名为N_Break的变量,可以修改该变量名。,.,说明:分类汇总中的分类变量可以是多个,此时的分类汇总称为多重分类汇总。如上述不同职业和不同年龄段顾客消费的例子即是多重分类汇总的应用。类似于数据的排序,在多重分类汇总中,指定多个分类变量的前后次序是很关键的。第一个指定的分类变量为主分类变量(如职业),其他的依次为第二(如年龄段)、第三分类变量等,它们决定了分类汇总的先后次序。,.,3.6数据分组,3.6.1数据分组的方法数据分组就是根据统计研究的需要,将数据按照某种标准重新划分为不同的组别。在数据分组的基础上进行的频数分析更能够概括和体现数据的分布特征。为适用于不同的统计分析需要,SPSS提供了以下几种数据分组方法:单变量值分组组距分组,.,居民家庭按人口数单项式分组,离散型变量如果变量值的变动范围不大,可以将一个变量值作为一组,称单项式分组。如右表:,单项式分组,.,在连续型变量或离散型变量值较多的情况下,可采用组距式分组形式。组距式分组就是把全部变量值划分为几个区间,每一区间的变量值作为一组。如右表:,组距式分组,.,在组距式分组中涉及到了几个关键点:a.组距:区间的距离即为组距。b.组数:组数的多少以分组后能恰当反映总体内部的分布特征和规律为好。c.组距(最大值-最小值)组数。d.根据组距各组的组距是否相等,又可以分为等距分组和不等距分组两种方式。e.组限:组距两端的数值称为组限,每组的最大值称为上限,用“最高值”表示,每组的最小值称为下限,用“最低值”表示。统计数据时,注意“上组限不在内”法则。另外,极端组可采用开放式组距。f.组中值:每组上、下限之间的中点数值。即:组中值=(上限十下限)2。,.,例如:职工基本情况数据,可按基本工资对职工进行分组,见下表:,.,SPSS单变量值分组的基本操作步骤:(1)选择菜单转换自动重新编码(2)将分组变量选择到变量新名称框中(3)在“新名称”框后输入存放分组结果的变量名,并单击【添加新名称】按钮(4)在“在重新编码的起点”框中选择单变量值分组按升序还是按降序进行。“最低值”表示升序;“最高值”表示降序。,3.6.2SPSS的单项式分组,.,组数和组距确定后,便可实施分组操作了,在分组操作时应:指定分组变量定义分组区间(注意遵循“不重不漏”原则)指定存放结果的变量SPSS对分组结果有两种存放策略,一种是用分组变量值覆盖原变量(重新编码到相同变量),另一种是将分组结果存到一个新变量中(重新编码到不同变量)。相应的操作也略有差异,通常采用第二种策略。,3.6.3SPSS的组距式分组,.,1、“重新编码到相同变量”分组操作(1)选择菜单转换重新编码到相同变量。(2)在出现的窗口中将分组变量选择到“变量”框中。(3)单击【新值和旧值】按钮进行分组区间定义。(4)在分组区间定义窗口中指定分组区间的下限和上限,并在“新值”框中给出该区间对应的分组值。单击【添加】按钮确认分组区间并加到旧新框中。单击【更改】和【删除】按钮来修改和删除分组区间。(5)如果仅对符合一定条件的个案分组,则单击【如果】按钮并输入SPSS条件表达式。否则,本步可略去。,.,2、“重新编码到不同变量”分组操作(1)选择菜单转换重新编码到不同变量。(2)在出现的窗口中将分组变量选择到输入变量输出变量框中。(3)在“输出变量”后输入存放分组结果的变量名,并单击【更正】按钮确认。可以在“标签”后输入相应的变量名标签。(4)单击【旧值和新值】按钮进行分组区间定义(方法与前面相似)。(5)如果仅对符合一定条件的个案分组,则单击【如果】按钮并输入SPSS条件表达式。否则,本步可略去。,.,3.7数据预处理的其他功能,3.7.1数据转置SPSS的数据转置就是将数据编辑窗口中数据的行列互换。基本操作步骤如下:(1)选择菜单数据转置。(2)指定数据转置后应保留哪些变量,将它们选入“变量”框中,未被选中的变量将在新文件中缺失。(3)指定转置后数据文件中各变量如何取名。,.,应选择一个取值唯一的变量(如职工号)作为标记变量并放到“名称变量”框中。转置后数据各变量取名为K_标记变量值(如K_001、K_002、K_003等)。如果略去本步,则转置后数据各变量名默认为VAR00001,VAR00002,VAR00003等。同时,SPSS还会自动产生一个名为Case_lbl的新变量,用来存放原数据文件中的各变量名。,.,3.7.2加权处理,统计分析中的加权处理是极为常见的,如计算加权平均数等。例如,希望掌握菜市场某天蔬菜销售的平均价格。如果仅用各种蔬菜销售单价的平均数作为平均价格就很不合理,还应考虑到销售量对平均价格的影响。因此,以蔬菜的销售量为权数计算各种蔬菜销售单价的加权平均数,就能够较准确地反应平均价格水平。,.,SPSS中指定加权变量的操作步骤是:(1)选择菜单数据加权个案。(2)选择“加权个案”选项,并将某变量作为加权变量选到“加权个案”框中。注意的是一旦指定了加权变量,那么以后的分析处理中加权是一直有效的,直到取消加权为止。取消加权应选择“请勿对个案加权”选项。,.,SPSS的数据拆分与数据排序很相似,但有一个重要的不同点,即数据拆分不仅是按指定变量进行简单排序,更重要的是根据变量对数据进行分组,为以后的分组统计分析提供便利。,3.7.3数据拆分,.,1、SPSS数据拆分的基本操作步骤:(1)选择菜单数据拆分文件,出现窗口,.,(2)将拆分变量选到“分组方式”框中(3)拆分会使后面的分组统计产生两种不同格式的结果。其中,“比较组”表示将分组统计结果输出在同一表格中,以便于不同组之间的比较;“按组组织输出”表示将分组统计结果分别输出在不同的表格中。通常选择第一种输出方式。(4)如果数据编辑窗口中的数据已经事先按所指定的拆分变量进行了排序,则可以选择“文件已排序”项,可以提高拆分执行的速度;否则,选择“按分组变量排序文件”项。,.,2、说明:(1)数据拆分将对后面的分析一直起作用,即无论进行哪种统计分析,都将按拆分变量的不同组别分别分析计算。如果希望对所有数据进行整体分析,则需要重新执行数据拆分,在数据拆分窗口中选择“分析所有个案”选项。(2)对数据可以进行多重拆分,类似于数据的多重排序。多重拆分的次序决定于选择拆分变量的前后次序。,.,大量的缺失值会给数据分析带来极大的影响,这就需要采用科学的方法对缺失值进行插补。操作步骤如下:(1)选择菜单转换替换缺失值(2)将需要插补的变量单击按钮送到“新变量”框中,该变量自动会生成一个新的变量,变量名为原变量名_1(3)在“方式”中选择插补方法。,3.7.4SPSS缺失值处理,.,序列:该变量所有非缺失值的均值临近点均值:该变量相邻非缺失值的均值临近点的中位数:该变量相邻非缺失值的中位数线性插值法:线性内插法(用缺失值前后两点的中点值做替代,如果前后值有一个是缺失值,则得不到替换值)点处的线性趋势:用线性拟合方式确定替代值,自变量为1-n的数值。,.,数据排秩是根据某变量观测值的大小,按一定的顺序排秩,生成一个代表其秩次的新变量,但原始观测值本身顺序不发生改变。操作步骤如下:(1)选择菜单转换个案排秩(2)将需要排秩的变量单击按钮送到“变量”框中,该变量自动会生成一个新的变量,变量名为R+原变量名;可选择分类变量到“排序标准”框中,如果选择,系统将按照此变量的不同组别分别进行排秩
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论