




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
14.1勾股定理教学设计执教者:张金简 班级:C=13 学科:数学 日期:2016年11月30日本课题共三课时,本节属于第一课时一、教材分析这节课是九年制义务教育初级中学教材华师大版八年级上册第十四章第一节勾股定理第一课时:直角三角形三边的关系。勾股定理是反映自然界基本规律的一条重要结论,它是直角三角形的一条重要性质,揭示了一个直角三角形三边之间的数量关系。它把三角形有一个直角的“形”的特点,转化为三边之间的“数”的关系,它是数形结合的典范。它可以解决许多直角三角形中的计算问题,勾股定理有着悠久的历史,在数学发展中起过重要的作用,在现实世界中有着广泛的作用。是初中数学教学内容重点之一。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。也可了解我国古代在勾股定理研究方面的成就,激发热爱祖国,热爱祖国悠久文化的思想感情。二、学情分析1通过初一一年的数学学习,初二学生能积极参与数学学习活动,对数学学习有较强的好奇心和求知欲,他们能探索具体问题中的数量关系和变化规律,也能较清楚地表达解决问题的过程及所获得的解题经验,他们愿意对数学问题进行讨论,并敢于对不懂的地方和不同的观点提出自己的疑问。2.以与勾股定理有关的人文历史知识为背景展开对勾股定理的认识,能激发学生的学习兴趣。三、教学目标(一)知识目标1理解回顾直角三角形中三角之间的关系,掌握新知即三边之间关系。2理解勾股定理的内涵,并能用勾股定理进行简单的计算3通过画图实验,让学生经历探索勾股定理的过程,发展合情推理的能力,体会数形结合的思想。(二)能力目标1.掌握勾股定理的内容,初步会用它进行有关计算,即已知两边,运用勾股定理列式求第三边。2.应用勾股定理解决实际问题(探索性问题和应用性问题)。3.经历探索勾股定理内容的过程,学会简单的合情推理与数学说理。4通过勾股定理的简单应用,能用数学的眼光观察现实世界和有条理思考与表达的能力,感受勾股定理的价值,也能写出简单的推理格式,以培养学生的逻辑思维能力。三情感与价值观培养学生参与的积极性,及合作交流的意识。学生通过适当训练,养成数学说理的习惯,逐步体验数学说理的重要性。在探索勾股定理的过程中,体验获得成功的快乐,锻炼学生克服困难的勇气。引导学生积极探索,注意观察生活,体验生活中的数学。通过了解我国古代在勾股定理研究方面的成就,激发热爱祖国,热爱祖国悠久文化的思想感情。四、教学重难点:(一)重点1体验勾股定理的发现过程,勾股定理的内涵。2勾股定理的简单应用,即在直角三角形中,知道两边,可以求第三边。(二)难点1勾股定理的发现过程。2应用勾股定理时斜边或直角的确定,推理格式的正确书写。3灵活运用勾股定理。五、教学策略及教法设计(一)教学策略课堂组织策略:创设贴近学生生活、生动有趣的问题情境,开展有效的数学活动,组织学生主动参与、勤于动手、积极思考,使他们在自主探究与合作交流的过程中,从整体上把握勾股定理探索的方法。学生学习策略:明确学习目标,了解所需掌握的知识,在教师的组织、引导、点拨下主动地从事观察、实验、猜测、验证与交流等数学活动,从而真正有效地理解和掌握勾股定理。辅助策略:借助多媒体课件,使学生直观形象地观察、动手操作。(二)教法设计探索法:让学生在探索直角三角形三边关系的活动中,积累数学活动经验。讨论法:在学生进行了自主探索之后,让他们进行合作交流,使他们互相促进、共同学习。练习法:教学中通过对形的计算,使学生了解数对形的意义,使数形结合在勾股定理教学中得到充分的展示。并精心设计随堂变式练习,巩固和提高学生的认知水平。六、教学过程(一) 创设情境 复习引入问题1国际数学家大会是最高水平的全球性数学学科学术会议,被誉为数学界的“奥运会”2002年在北京召开了第24届国际数学家大会右图就是大会会徽的图案你见过这个图案吗?它由哪些我们学过的基本图形组成?这个图案有什么特别的意义?前面我们学习了有关三角形的知识,我们知道,三角形有三个角和三条边三个角的数量关系明确吗?三条边的数量关系明确吗?问题2 相传2500多年前,毕达哥拉斯有一次在朋友家作客,发现朋友家用砖铺成的地面图案反映了直角三角形三边的某种数量关系问题2问题1(二)、探索新知1、(观察活动)观察图形,分析、思考其中隐含的规律通过直接数等腰直角三角形的个数,或者用割补的方法将小正方形P,Q中的等腰直角三角形补成一个大正方形。得出结论:小正方形P,Q的面积之和等于大正方形R的面积 由这三个正方形P,Q,R的边长构成的等腰直角三角形三条边长之间有怎样的特殊关系? (引导学生直接由正方形的面积等于边长的平方)归纳出:等腰直角三角形两条直角边的平方和等于斜边的平方 【设计意图】从最特殊的等腰直角三角形入手,通过观察正方形面积关系得到三边关系,对等腰直角三角形边长关系进行初步的一般化2、(观察活动)在网格中的一般的直角三角形,以它的三边为边长的三个正方形A,B,C的面积是否也有类似的关系? (师生活动学生动手计算),分别求出A,B,C的面积并寻求它们之间的关系引导学生直接由正方形的面积等于边长的平方归纳出:直角三角形两条直角边的平方和等于斜边的平方 【设计意图】为方便计算,网格中的直角三角形边长通常设定为整数,进一步体会面积割补法,为探究无网格背景下直角三角形三边关系打下基础,提供方法3、(学生动手操作)再画一个直角三角形,使两直角边的长分别是6cm、8cm,用直尺量出斜边的长度。再找出这三条边有什么等量关系。(三)得出结论:勾股定理(gou-gu theorem):文字语言:在一个直角三角形中:两直角边的平方和等于斜边的平方。也就是说:如果直角三角形的两直角边为,斜边为,那么几何语言:ABC是直角三角形 C=90 (已知)(勾股定理)(勾股史话:商高定理:毕达哥拉斯定理:了解我国古代在勾股定理研究方面的成就,激发热爱祖国,热爱祖国悠久文化的思想感情。)34例题讲解:例1:求出下列直角三角形中未知边的长21例2、求下列图中表示边的未知数x、y、z的值.课堂练习:1、练闯考 (P82) :3,6 2、练闯考 (P82) :53、练闯考 (P82) :4(四)学以致用1、课本P126 12、为了求出湖两岸的A、B 两点之间的距离,一个观测者在点C 设桩,使ABC 恰好为直角三角形.通过测量,得到 AC 长160米,BC 长128米.问从点A穿过湖到点 B 有多远? 9米12米3、如图,强大的台风使得一根旗杆在离地面9米处断裂,旗杆顶部落在离旗杆底部12米处,旗杆折断之前有多高?(五)能力拓展129CAB1、已知:RtBC中,AB,AC,则BC的长为 .2、在ABC中,C=90AC=9m,BC=12m 求ABC的面积;求斜边AB的长;求求斜边AB上的高。3、小明想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,求旗杆的高度。 七、课堂小结
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- Unit 2 He worked in an office .教学设计-2025-2026学年小学英语五年级下册外研版(一起)
- 2025签订合同授权书范本
- 第4课 集字临摹练习(二)说课稿-2025-2026学年小学书法西泠版六年级上册-西泠版
- 2025电竞赛事品牌合作合同
- 2025商业银行借款合同范本
- 2025年浙江公务员考试试题真题
- 2025年的物流配送服务合同
- 高中历史 第8课 欧洲的殖民扩张与掠夺说课稿 岳麓版必修2
- 化肥厂化肥进口管理制度
- 2025年上海市租房租赁合同范本
- 高校物业考核管理办法
- 2025年党员党的基本理论应知应会知识100题及答案
- c1满分考试题型及答案
- 【公开课】+地球的运动-地球的公转+课件-2024-2025学年七年级地理上学期人教版
- 绿化工程采购管理制度
- 国家保密培训课件
- 2025至2030中国快递行业发展现状及发展趋势与投资风险分析
- 关于医院“十五五”发展规划(2026-2030)
- 雪花啤酒终端销售协议书
- 贵州省2025年高职院校分类考试招生中职生文化综合英语试题答案
- 配餐公司库房管理制度
评论
0/150
提交评论