




已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精品文档一元二次方程一) 一元二次方程的定义是一元二次方程的一般式,只含有一个末知数、且末知数的最高次数是2的方程,叫做一元二次方程。这三个方程都是一元二次方程。求根公式为二)。a是二次项系数;b是一次项系数;c是常数项,注意的是系数连同符号的概念。这些系数与一元次方程的根之间有什么样的关系呢?1、当0时方程有2个不相等的实数根;2、当0时方程有两个相等的实数根;3、当 0时方程无实数根.4、当0时方程有两个实数根(方程有实数根);5、ac0)0有两个不相等的实数根C0两根同号b0有两个负根不相等b0有两个正根不相等C0负根绝对值较大(正根绝对值较小)b0一根为0另一个根为负根b0有两个相等的负根b0有两个相等的正根b =0有两个相等的根都为0注:凡是题中出现了x1.x20 即a、c异号方程必有解。例题 m为何值时,方程 有两个相等的实数根;无实数根;有两个不相等的实数根;有一根为0;两根同号;有一个正根一个负根;两根互为倒数。例题 已知方程的两根一个大于1,另一个根小于1,求m的值的范围。例题已知方程ax2+bx+c 0 (a0)的实数根为m、n求下列对称式子的值;。例题已知实数a、b满足,且求的值。例题已知关于x的方程有两个不相等的实数根,(1)求k的取值范围。(2)化简例题 设a、b是方程的两个实数根,求的值。根据题意得a+b=-1,ab=-2009,a2+2a+b=a2+a+a+b=a2+a-1,又a是x2+x-2009=0的根,a2+a-2009=0,a2+a=2009,a2+2a+b=2009-1=2008六)解一元二次方程中的应用 直接开平方法:用简明图表可表示为:直接开平方法:形如(mx+n)2=p (m0,p0)两个一元一次方程。配方法:用简明图表可表示为:配方法:一元二次方程 形如(mx+n)2=p (m0,p0)的方程因式分解法:用简明图表可表示为: 因式分解法:一元二次方程两个一元一次方程 公式法:x1,x2一元二次方程应用题部分一、列方程解应用题的一般步骤是1.审:审清题意:已知什么,求什么?已,未知之间有什么关系?2.设:设未知数,语句要完整,有单位(同一)的要注明单位;3.列:列代数式,列方程;4.解:解所列的方程;5.验:是否是所列方程的根;是否符合题意;6.答:答案也必需是完事的语句,注明单位且要贴近生活.注:列方程解应用题的关键是: 找出等量关系;所谓的列方程其实质上就是把要求的数用一个末知的数(字母)表示,根据题目中提供的条件列出两个代数式,这两个代数式表示同一个量(这两个代数式中至少有一个代数式中要含有末知数),用等于号把这两个代数式连接起来就得到了方程式。二、一元二次方程,其应用题的范围也比较广泛,归纳起来可大致有以下几种类型:求互相联系的两数(数与数字方面的应用题):例:两个相邻偶数的积是168,求这两个偶数。解:设其中一数为x,另一数为x+2,依题意得:x(x+2)168x2+2x-168=0(x-12)(x+14)0x1=12,x2 =14当x12时,另一数为14;当x-14时,另一数为-12.答:这两个偶数分别为12、14或-14、-12.四)银行利率应用题(含利滚利问题):年利息本金年利率(年利率为a%)存一年的本息和:本金(1+年利率) ,即本金(1+ a%)存两年的本息和:本金(1+年利率)2, 即本金(1+a%)2存三年的本息和:本金(1+年利率)3, 即本金(1+a%)3存n年的本息和:本金(1+年利率)n, 即本金(1+a%)n例:我村2006年的人均收入为1200元,2008年的人均收入为1452元,求人均收入的年平均增长率。解:设均收入的年平均增长率,则1200(1+x)2=1452解得:X1=0.1,X2=-2.1(不合题意,舍去)人均收入的年平均增长率为10%。五)销售利润方案类题(含薄利多销问题及价格与销量问题)六)函数与方程 七)信息题 八)背景题 九)古诗题 十)象棋比赛题十一)几何类题:等积变形,动态几何问题,梯子问题,航海问题,几何与图表信息,探索存在问题,平分几何图形的周长与面积积问题,利用图形探索规律最常见的如:求直角三角形的边。例:一个直角三角形的两条直角边相差3cm,面积是9cm,求较长的直角边的长。解:设较短的直角边的长为x厘米,较长的直角边的长为(x3)厘米,根据三角形的面积公式,得x(x+3)=9解得:X=3或X=-6(不合题意,舍去)故X=3,X+3=6所以较长的直角的边长为6厘米。常见的还有就是:求矩形的边:例:利用一面墙(墙的长度不限),用20m长的篱笆,怎样围成一个面积为50m2的矩形场地?解:设靠墙的一边为x x(20-2x)=20解得:x=5设靠墙的两边为5m,另一边为10m十二)赛制循环问题:单循环:设参加的球队为x,则全部比赛共 x(x-1)场;双循环:设参加的球队为x,则全部比赛共x(x-1)场;【单循环比双循环少了一半】例:参加一次聚会的每两人都握了一次手,所有人握手10次,有多少人参加聚会?解:设一共有x人x(x-1)=10解得:x=5 或x=-4(不合题意,舍去)一共有5人销售利润方案类题(1)经济类一1、某商店将进价为8元的商品按每件10元售出,每天可售出200件,现在采取提高商品售价减少销售量的办法增加利润,如果这种商品每件的销售价每提高0.5元其销售量就减少10件,问应将每件售价定为多少元时,才能使每天利润为640元? 解:设每件售价x元,则每件利润为x-8, 每天销售量则为所以每天利润为640元时, 则根据:(每天销售量)(每件利润)= 每天利润 故有:则有x2-28x+192=0 即(x-12)(x-16)=0 所以x1=12或x2=16。 答:当每件售价为12元或16元时,每天利润为640元。3、苏宁服装商场将每件进价为30元的内衣,以每件50元售出,平均每月能售出300件,经过试销发现,每件内衣涨价10元,其销量就将减少10件,为了实现每月8700元销售利润,假如你是商场营销部负责人,你将如何安排进货?解:设涨价10x元,销量将减少10x件:(300-10X)(50+10X-30)=8700 6000+3000X-200X-100X=8700X-28X+27=0 (X-1)(X-27)=0X1=1,以每件50+101=60元售出,平均每月能售出300-101=290件,进货290件,以每件60元售出.X2=27,以每件50+1027=320元售出,平均每月能售出300-1027=30件,进货30件,以每件320元售出.因为售出价320元太高,此解舍去.(此解舍去不是太有道理的)函数与方程1.某工厂生产的某种产品质量分为10个档次.第1档次(最低档次)的产品一天能生产76件,每件利润10元。每提高一个档次,每件利润增加2元,但每天产量减少4件.(1)若生产第x档次的产品一天的总利润为y元(其中x为正整数,且1x10),求出y关于x的函数关系式;(2)若生产第x档次的产品一天的总利润为1080元,求该产品的质量档次.解:1)生产数量为:76-4(X-1)利润为:10+2(X1)则函数为:Y=764(X1)10+2(X1)整理为:Y=-8X2+128X+6402)当Y=1080时,则有:1080=-8X2+128X+640 整理得:X2-16X+55=0解之得X1=5或X2=11(不合题舍) 固为第五档.例1【实际背景】预警方案确定:设如果当月W6,则下个月要采取措施防止“猪贱伤农” 【数据收集】 今年2月5月玉米、猪肉价格统计表 月 份2345玉米价格(元/500克)0.70.80.91猪肉价格(元/500克)7.5m6.256【问题解决】(1)若今年3月的猪肉价格比上月下降的百分数与5月的猪肉价格比上月下降的百分数相等,求3月的猪肉价格m;(2)若今年6月及以后月份,玉米价格增长的规律不变,而每月的猪肉价格按照5月的猪肉价格比上月下降的百分数继续下降,请你预测7月时是否要采取措施防止“猪贱伤农”;(3)若今年6月及以后月份,每月玉米价格增长率是当月猪肉价格增长率的2倍,而每月的猪肉价格增长率都为a,则到7月时只用5.5元就可以买到500克猪肉和500克玉米请你预测8月时是否要采取措施防止“猪贱伤农” 解:(1)由题意, , 解得: m=7.2(2)从2月5月玉米的价格变化知,后一个月总是比前一个月价格每500克增长0.1元(或:设ykx+b,将(2,0.7),(3,0.8)代入,得到y=0.1x+0.5,把(4,0.9),(5,1)代入都符合,再得到(6,1.1)6月玉米的价格是:1.1元/500克;5月增长率: ,6月猪肉的价格:6(1)=5.76元/500克.W=5.246, 要采取措施(3)7月猪肉价格是:元/500克; 7月玉米价格是:元/500克;由题意,+=5.5,解得, 不合题意,舍去 7.59, ,不(或:不一定)需要采取措施几何类题(1)等积变形例1将一块长18米,宽15米的矩形荒地修建成一个花园(阴影部分)所占的面积为原来荒地面积的三分之二.(精确到0.1m)(1)设计方案1(如图2)花园中修两条互相垂直且宽度相等的小路.(2)设计方案2(如图3)花园中每个角的扇形都相同.以上两种方案是否都能符合条件?若能,请计算出图2中的小路的宽和图3中扇形的半径;若不能符合条件,请说明理由.解:都能.(1)设小路宽为x,则1815,即x233x+1800,解这个方程,得,即(舍去);(2)设扇形半径为r,则3.14r21815,即r257.32,所以r7.6.说明:等积变形一般都是涉及的是常见图形的体积,面积公式;其原则是形变积不变;或形变积也变,但重量不变,等等.图2图4图3(2)动态几何问题例:如图4所示,在ABC中,C90,AC6cm,BC8cm,点P从点A出发沿边AC向点C以1cm/s的速度移动,点Q从C点出发沿CB边向点B以2cm/s的速度移动.(1)如果P、Q同时出发,几秒钟后,可使PCQ的面积为8平方厘米?(2)点P、Q在移动过程中,是否存在某一时刻,使得PCQ的面积等于ABC的面积的一半.若存在,求出运动的时间;若不存在,说明理由.解:因为C90,所以AB10(cm).(1)设xs后,可使PCQ的面积为8cm2,所以 APxcm,PC(6x)cm,CQ2xcm.则根据题意,得(6x)2x8.整理,得x26x+80,解这个方程,得x12,x24.所以P、Q同时出发,2s或4s后可使PCQ的面积为8cm2.(2)设点P出发x秒后,PCQ的面积等于ABC面积的一半.则根据题意,得(6x)2x68.整理,得x26x+120.所以方程无实数解。由于此方程没有实数根,所以不存在使PCQ的面积等于ABC面积一半的时刻.说明:本题虽然是一道动态型应用题,但它又要运用到行程的知识,求解时必须依据:路程速度时间;动态题的解题是思想是化动态为静态,在运动的某一时刻就是一个静态时的状态。(3)梯子问题例:一个长为10m的梯子斜靠在墙上,梯子的底端距墙角6m.(1)若梯子的顶端下滑1m,求梯子的底端水平滑动多少米?(2)若梯子的底端水平向外滑动1m,梯子的顶端滑动多少米?(3)如果梯子顶端向下滑动的距离等于底端向外滑动的距离,那么滑动的距离是多少米?解:依题意,梯子的顶端距墙角8(m).(1)若梯子顶端下滑1m,则顶端距地面7m.设梯子底端滑动xm.则根据勾股定理,列方程72+(6+x)2102,整理,得x2+12x150,解这个方程,得x11.14,x213.14(舍去),所以梯子顶端下滑1m,底端水平滑动约1.14m.(2)当梯子底端水平向外滑动1m时,设梯子顶端向下滑动xm.则根据勾股定理,列方程(8x)2+(6+1)2100.整理,得x216x+130.解这个方程,得x10.86,x215.14(舍去).所以若梯子底端水平向外滑动1m,则顶端下滑约0.86m.(3)设梯子顶端向下滑动xm时,底端向外也滑动xm.则根据勾股定理,列方程 (8x)2+(6+x)2102,整理,得2x24x0,解这个方程,得x10(舍去),x22.所以梯子顶端向下滑动2m时,底端向外也滑动2m.图5说明:求解时应注意无论梯子沿墙如何上下滑动,梯子始终与墙上、地面构成直角三角形;在滑动的过程中梯子的长度没有改变,也就是构成的直角三角形的斜边是一个常量10m。(4)、航海问题例:如图5所示,我海军基地位于A处,在其正南方向200海里处有一重要目标B,在B的正东方向200海里处有一重要目标C,小岛D恰好位于AC的中点,岛上有一补给码头;小岛F位于BC上且恰好处于小岛D的正南方向,一艘军舰从A出发,经B到C匀速巡航一艘补给船同时从D出发,沿南偏西方向匀速直线航行,欲将一批物品送往军舰.(1)小岛D和小岛F相距多少海里?(2)已知军舰的速度是补给船的2倍,军舰在由B到C的途中与补给船相遇于E处,那么相遇时补给船航行了多少海里?(精确到0.1海里)解(1)F位于D的正南方向,则DFBC.因为ABBC,D为AC的中点,所以DFAB100海里,所以,小岛D与小岛F相距100海里.(2)设相遇时补给船航行了x海里,那么DEx海里,AB+BE2x海里,EFAB+BC(AB+BE)CF(3002x)海里.在RtDEF中,根据勾股定理可得方程x21002+(3002x)2,整理,得3x21200x+1000000.解这个方程,得x1200118.4,x2200+(不合题意,舍去).所以,相遇时补给船大约航行了118.4海里.说明:求解这类几何运动题题型时,一定要认真地分析题意,及时发现题目中的等量关系,并能从图形中寻找直角三角形,以便正确运用勾股定理布列一元二次方程;或找出相似三角形,应用相似比构造出等量关系式;或找出线段之间的倍数关系,从而找出等量关系式。探索存在问题例:将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17cm2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于12cm2吗? 若能,求出两段铁丝的长度;若不能,请说明理由.解(1)设剪成两段后其中一段为xcm,则另一段为(20x)cm.则根据题意,得+17,整理得:解得x116,x24,当x16时,20x4;当x4时,20x16,答:这段铁丝剪成两段后的长度分别是4cm和16cm.(2)不能.理由是:不妨设剪成两段后其中一段为ycm,则另一段为(20y)cm.则由题意得+12,整理,得y220y+1040,0所以此方程无解,即不能剪成两段使得面积和为12cm2.说明本题的第(2)小问也可以运用求根公式中的b24ac来判定.若b24ac0,方程有两个实数根,若b24ac0,方程没有实数根,本题中的b24ac160即无解. 一元二次方程练习题一、 填空1一元二次方程化为一般形式为: ,二次项系数为: ,一次项系数为: ,常数项为: 。2关于x的方程,当 时为一元一次方程;当 时为一元二次方程。3已知直角三角形三边长为连续整数,则它的三边长是 。4. ; 。5直角三角形的两直角边
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025商场店铺租赁合同
- 美容店知识培训课件
- 工勤岗位考试题型及答案
- 2025股权转让合同样例:股权转让协议
- 2025汽车租赁合同书范本标准版范文
- 2025年大学试题及答案(财经商贸)
- 2025年度NNI网址销售合同
- 美容小气泡知识培训总结
- 西南财经考研试题及答案
- 信昌考试题目及答案高中
- 简单的逻辑学
- 安徽省建筑工程质量验收监督综合表
- 应届毕业生培训方案课件
- 2023柔性棚洞防护结构技术规程
- 浙江工业大学学生综合测评分细则
- 英语初高中衔接音标
- 第十四章滚动轴承相关设计
- 第1章 数据与统计学-统计学
- GB/T 2059-2000铜及铜合金带材
- GB/T 14456.1-2017绿茶第1部分:基本要求
- 设备维护保养手册
评论
0/150
提交评论