




已阅读5页,还剩17页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
.,角平分线的性质,第一课时,.,不利用工具,请你将一张用纸片做的角分成两个相等的角。你有什么办法?,再打开纸片,看看折痕与这个角有何关系?,(对折),情境问题,.,1、如图,是一个角平分仪,其中AB=AD,BC=DC。将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是角平分线,你能说明它的道理吗?,情境问题,如果前面活动中的纸片换成木板、钢板等没法折的角,又该怎么办呢?,.,2、证明:在ACD和ACB中AD=AB(已知)DC=BC(已知)CA=CA(公共边)ACDACB(SSS)CAD=CAB(全等三角形的对应边相等)AC平分DAB(角平分线的定义),.,根据角平分仪的制作原理怎样作一个角的平分线?(不用角平分仪或量角器),O,探究新知,N,O,M,C,E,.,分别以,为圆心大于的长为半径作弧两弧在AOB的内部交于,如何用尺规作角的平分线?,A,作法:,以为圆心,适当长为半径作弧,交于,交于,作射线OC,则射线即为所求,.,.,1平分平角AOB2通过上面的步骤,得到射线OC以后,把它反向延长得到直线CD,直线CD与直线AB是什么关系?,.,探究角平分线的性质,(1)实验:将AOB对折,再折出一个直角三角形(使第一条折痕为斜边),然后展开,观察两次折叠形成的三条折痕,你能得出什么结论?,(2)猜想:角的平分线上的点到角的两边的距离相等.,.,证明:在PDO和PEO中PDO=PEO1=2OP=OPPDOPEO(AAS)PD=PE,已知:如图,OC平分AOB,点P在OC上,PDOA于点D,PEOB于点E求证:PD=PE,探究角平分线的性质,OC平分AOB1=2,PDOA,PEOBPDO=PEO,.,角平分线的性质:角的平分线上的点到角的两边的距离相等,点P是AOB平分线上的一点又PDOA,PEOBPD=PE(角平分线上的点到角的两边的距离相等),证明线段相等,有角的平分线,有垂直距离,应用定理的前提条件是:,定理的作用:,.,如图所示OC是AOB的平分线,P是OC上任意一点,问PE=PD?为什么?,PD,PE没有垂直OA,OB,它们不是角平分线上任一点这个角两边的距离,所以不一定相等直,.,思考:要在区建一个集贸市场,使它到公路,铁路距离相等且离公路,铁路的交叉处米,应建在何处?(比例尺1:20000),.,如图:在ABC中,C=90AD是BAC的平分线,DEAB于E,F在AC上,BD=DF;求证:CF=EB,实践应用(2),分析:要证CF=EB,首先我们想到的是要证它们所在的两个三角形全等,即RtCDFRtEDB.,现已有一个条件BD=DF(斜边相等),还需要我们找什么条件,DC=DE(因为角的平分线的性质)再用HL证明.,.,已知:如图,ABC中,C=90,AD是ABC的角平分线,DEAB于E,F在AC上BD=DF,求证:CF=EB。,证明:AD平分CABDEAB,C90(已知)CDDE(角平分线的性质)在tCDF和RtEDB中,CD=DE(已证)DF=DB(已知)RtCDFRtEDB(HL)CF=EB(全等三角形对应边相等),.,已知:如图,在ABC中,AD是它的角平分线,且BD=CD,DEAB,DFAC,垂足分别是E,F.求证:EB=FC.,证明:AD平分CABDEAB,DFACDEDF(角平分线的性质)在tBDE和RtCDF中,DE=DF(已证)BD=CD(已知)RtBDERtCDF(HL)EB=CF(全等三角形对应边相等),.,小结:,1:画一个已知角的角平分线;(注意作图痕迹和几何语言的表达),及画一条已知直线的垂线;,2:角平分线的性质:,角的平分线上的点到角的两边的距离相等3:角平分线的性质的应用,.,1.如图,OC是AOB的平分线,PD=PE,PDOA,PEOB,思考:由PD=PE能不能得到PDOA,PEOB?,.,1、如图,连接角平分仪的边BD、AC,那么AC与BD有什么关系?为什么?,提高与拓展,.,2.如图,在ABC中,ACBC,AD为BAC的平分线,DEAB,AB7,AC3,求BE的长。,.,例1已知:在等腰RtABC中,ACBCC90,AD平分BAC,DEAB于点E。求证:BDDEAC,变式已知AB15cm,求DBE的周长,E,D,C,B,A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年建筑结构设计师专业技能模拟题与答案详解
- 电信弱电知识培训课件
- 2025年玻璃熔化工中级实操考试面试指南及技巧
- 2025年物资仓库保管员招聘面试题详解实际案例与答题技巧
- 办公室文员实习工作报告
- 急性CO中毒的急救和护理
- 甲状腺手术的麻醉
- 甲流预防课件
- 《百年孤独(节选)》课件
- 田径跳高课件
- 2025至2030年中国PA10T行业市场竞争态势及未来前景分析报告
- CJ/T 328-2010球墨铸铁复合树脂水箅
- 人教版(2024)七年级下册英语期末复习:主题阅读理解 刷题练习题20篇(含答案解析)
- 法人更换免责协议书
- 运营管理核心知识点
- 2025至2030年中国程控线路板市场分析及竞争策略研究报告
- 高三化学家长会课件
- 光伏电站安全培训要点
- 设计院管理规章制度手册及实施指南
- 电力工程施工安全风险管理措施
- 2025年综合窗口岗位工作人员招聘考试笔试试题(附答案)
评论
0/150
提交评论