


已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
,考点一由数列的前几项求数列的通项公式,【题组练透】,2.根据数列的前几项,写出各数列的一个通项公式:(1)4,6,8,10,;,(3)a,b,a,b,a,b,(其中a,b为实数);(4)9,99,999,9999,.,【类题通法】,用观察法求数列的通项的技巧(1)根据数列的前几项求它的一个通项公式,要注意观察每一项的特点,观察出项与n之间的关系、规律,可使用添项、通分、分割等办法,转化为一些常见数列的通项公式来求。对与正负符号变化,可用(-1)n或(-1)n+1来调整。(2)根据数列的前几项写出数列的一个通项公式是不完全归纳法,它蕴含着“从特殊到一般”的思想。,考点二由an与Sn的关系求通项an,已知下面数列an的前n项和Sn,求an的通项公式:(1)Sn2n23n;(2)Sn3nb。,【类题通法】,已知数列an的前n项和Sn,求数列的通项公式,其求解过程分为三步:(1)先利用a1=S1求出a1;(2)用n-1替换Sn中的n得到一个新的关系,利用an=Sn-Sn-1(n2)便可求出n2时an的表达式;(3)对n=1时的结果进行检验,看是否符合n2时an的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n=1与n2两段来写。,考点三由递推关系式求数列的通项公式,【类题通法】,由数列的递推公式求通项公式时,若递推关系为an1anf(n)或an1f(n)an,则可以分别通过累加、累乘法求得通项公式,另外,通过迭代法也可以求得上面两类数列的通项公式,(如角度二),注意:有的问题也可利用构
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年文创科技行业技术应用前景研究报告
- 2025年生物技术行业创新成果与产业应用前景研究报告
- 2025年医疗器械行业智能医疗器械发展趋势与临床应用前景研究报告
- 2025年物流快递行业无人机快递应用前景报告
- 压力机安全操作培训课件
- 2025年电子科技行业5G技术应用前景研究报告
- 2025年物联网行业物联网技术应用前景分析研究报告
- 2025年物联网行业智能家居设备市场前景研究报告
- 宜宾市2025四川宜宾市市属事业单位第三批考核招聘47人(卫生专场)笔试历年参考题库附带答案详解
- 国家事业单位招聘2025浙江省近海海洋工程环境与生态安全重点实验室招聘1人笔试历年参考题库附带答案详解
- 《医学中心肺癌诊疗》(讲课课件)
- 《肺炎克雷伯菌感染》课件
- 小学生科普课视错觉课件
- 电力安全微课堂
- 质量部长述职报告
- 无人机技术在农业领域的可行性分析报告
- 规模灵活资源广域接入的新型配电系统分层分群架构与规划技术研究
- 音乐心理学理论-洞察分析
- 法院报名登记表
- 上海市闵行区区管国企招聘笔试冲刺题2025
- 2024年度商业保理合同:保理公司与出口商之间的商业保理协议3篇
评论
0/150
提交评论