全文预览已结束
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
STUDYONNEURALNETWORKSCONTROLALGORITHMSFORAUTOMOTIVEADAPTIVESUSPENSIONSYSTEMSLJFU,JGCAOSCHOOLOFAUTOMOBILEENGINEERING,CHONGQINGINSTITUTEOFTECHNOLOGY,XINGSHENGROADNO04YANGJIAPING,CHONGQING,CHINA400050EMAILFLJCQITEDUCNABSTRACTTHESEMIACTIVESUSPENSION,WHICHCONSISTSOFPASSIVESPRINGANDACTIVESHOCKABSORBERINTHELIGHTOFDIFFERENTROADCONDITIONSANDAUTOMOBILERUNNINGCONDITIONS,ISTHEMOSTPOPULARAUTOMOTIVESUSPENSIONBECAUSEACTIVESUSPENSIONISCOMPLICATEDINSTRUCTUREANDPASSIVESUSPENSIONCANNOTMEETTHEDEMANDSOFVARIOUSROADCONDITIONSANDAUTOMOBILERUNNINGCONDITIONSINTHISPAPER,ANEUROFUZZYADAPTIVECONTROLCONTROLLERVIAMODELINGOFRECURRENTNEURALNETWORKSOFAUTOMOTIVESUSPENSIONISPRESENTEDTHEMODELINGOFNEURALNETWORKSHASIDENTIFIEDAUTOMOTIVESUSPENSIONDYNAMICPARAMETERSANDPROVIDEDLEARNINGSIGNALSTONEUROFUZZYADAPTIVECONTROLCONTROLLERINORDERTOVERIFYCONTROLRESULTS,AMINIBUSFITTEDWITHMAGNETORHEOLOGICALFLUIDSHOCKABSORBERANDNEUROFUZZYCONTROLSYSTEMBASEDONDSPMICROPROCESSORHASBEENEXPERIMENTEDWITHVARIOUSVELOCITYANDROADSURFACESTHECONTROLRESULTSHAVEBEENCOMPAREDWITHTHOSEOFOPENLOOPPASSIVESUSPENSIONSYSTEMTHESERESULTSSHOWTHATNEURALCONTROLALGORITHMEXHIBITSGOODPERFORMANCETOREDUCTIONOFMINIBUSVIBRATIONIINTRODUCTIONTHEMAINFUNCTIONSOFAUTOMOTIVESUSPENSIONSYSTEMARETOPROVIDESUPPORTTHEWEIGHTOFAUTOMOBILE,TOPROVIDESTABILITYANDDIRECTIONCONTROLDURINGHANDLINGMANEUVERSANDTOPROVIDEEFFECTIVEISOLATIONFROMROADDISTURBANCESTHESEDIFFERENTTASKSLEADTOCONFLICTINGDESIGNREQUIREMENTSTHESEMIACTIVESUSPENSION,WHICHCONSISTSOFPASSIVESPRINGANDACTIVESHOCKABSORBERWITHCONTROLLABLEDAMPINGFORCEINTHELIGHTOFDIFFERENTROADCONDITIONSANDAUTOMOBILERUNNINGCONDITIONS,ISTHEMOSTPOPULARAUTOMOTIVESUSPENSIONBECAUSETHEACTIVESUSPENSIONISCOMPLICATEDINSTRUCTUREANDCONVENTIONALPASSIVESUSPENSIONCANNOTMEETTHEDEMANDSOFDIFFERENTROADCONDITIONSANDAUTOMOBILERUNNINGCONDITIONSSIMIACTIVESUSPENSIONWITHVARIABLEMAGNETORHEOLOGICALMRFLUIDSHOCKABSORBERSHASSOMEADVANTAGESINREDUCINGAUTOMOBILEVIBRATIONATRELATIVELOWCASTANDPOWERSOFAR,THEREAREANUMBEROFCONTROLMETHODSTHATHAVEBEENDEVELOPEDFORSEMIACTIVESUSPENSION,STARTWITHSKYHOOKMETHODDESCRIBEDBYKARNOOPP,ETALLTHISMETHODATTEMPTSTOMAKETHESHOCKABSORBEREXERTAFORCETHATISPROPORTIONALTOTHEABSOLUTEVELOCITYBETWEENSPRUNGMASSESSOMEINVESTIGATIONSUSECRLIAO,BCHENSCHOOLOFAUTOMOBILEENGINEERING,CHONGQINGINSTITUTEOFTECHNOLOGY,XINGSHENGROADNO04YANGJIAPING,CHONGQING,CHINA400050EMAILCHENBAOCQITEDUCNLINEARSUSPENSIONMODEL,WHICHISLINEARIZEDAROUNDTHEOPERATIONALPOINTS,ANDCONTROLALGORITHMAREDERIVEDUSINGLINEARMODELS,SUCHASLQGANDROBUSTCONTROL2,3THESECONTROLMETHODSCANNOTMAKEAFULLEXPLOITATIONOFSEMIACTIVESUSPENSIONRESOURCESBECAUSEOFAUTOMOTIVESUSPENSIONISINHERENTNONLINEARPERFORMANCEINORDERTOIMPROVEPERFORMANCEOFNONLINEARSUSPENSIONSYSTEM,SOMEINTELLIGENTCONTROLTECHNIQUES,SUCHASFUZZYLOGICCONTROL,NEURALNETWORKSCONTROLANDNEUROFUZZYCONTROL,HAVEBEENRECENTLYAPPLIEDTONONLINEARSUSPENSIONCONTROLBYRESEARCHERS4,5INTHISPAPER,ANEUROFUZZYADAPTIVECONTROLCONTROLLERISAPPLIEDTOCONTROLSUSPENSIONVIBRATIONVIAMODELINGOFRECURRENTNEURALNETWORKSOFAUTOMOTIVESUSPENSIONANDCONTINUOUSLYVARIABLEMRSHOCKABSORBERSTHECONTROLLERSTRUCTURESDESIGNANDNEUROFUZZYCONTROLALGORITHMSAREPRESENTEDINSECTION2ARECURRENTNEURALNETWORKSDYNAMICSMODELINGOFSUSPENSIONARESHOWNRESPECTIVELYINSECTION3THECONTROLSYSTEMEXPERIMENTATIONSAREGIVENINSECTION4ANDSOMECONCLUSIONSAREFINALLYDRAWNINSECTION5HINEUROFUZZYADAPTIVECONTROLALGORITHMSFORAUTOMOTIVESUSPENSIONSTHENEUROFUZZYCONTROLSYSTEMPRESENTEDINTHISPAPER,SHOWNINFIGURE1,ISCOMPOSEDOFANEUROFUZZYNETWORKANDARECURRENTNEURALNETWORKMODELINGOFMINIBUSSUSPENSIONTHENEUROFUZZYNETWORKISDEFINEDASADAPTIVECONTROLLER,WHICHHASFUNCTIONOFLEARNINGANDCONTROLTHEFUNCTIONOFRECURRENTNEURALNETWORKISTOIDENTIFYMINIBUSSUSPENSIONMODELPARAMETERSYTANDYDTARESYSTEMACTUALOUTPUTANDSYSTEMDESIREOUTPUTRESPECTIVELYINFIGURE1XLTISSYSTEMERROROFSYSTEMACTUALOUTPUTBETWEENSYSTEMDESIREOUTPUT,X2TISSYSTEMERRORRATEOFSYSTEMACTUALOUTPUTBETWEENSYSTEMDESIREOUTPUTXITANDX2TAREDEFINEDASFELLOWSXITETYTYDT1X2TETET1ET20780394224/05/2000C2005IEEE1795FIG1STRUCTUREOFNEURALNETWORKSCONTROLSYSTEMFORSUSPENSIONNETWORKSCONTROLSYSTEMTHEGLOBALSETSOFLINGUISTICVARIABLESAREDEFINEDRESPECTIVELYASFELLOWSE,E,1ATJUUU,UTHENEUROFUZZYCONTROLLERHASFOURLAYERSNEURONS,INWHICHTHEFIRSTANDTHESECONDLAYERSCORRESPONDTOTHEFUIZZYRULESIFPART,THETHIRDLAYERCORRESPONDSTOTHEINFERENCEANDTHEFORTHLAYERCORRESPONDSTOTHEFUZZYRULESTHENPARTTHESETSXL,X2ANDUARERESPECTIVELYDIVINEDINTOSEVENFUZZYSUBSETSOFWHICHFUZZYSETSX1,X2UARECOMPOSEDASFALLOWSRULESX1NB,NM,NS,ZE,PS,PM,PBX2NB,NM,NS,ZE,PS,PM,PBUNB,NM,NS,ZE,PS,PM,PBINTHISPAPER,THEGAUSSIANMEMBERSHIPFUNCTIONAREUSEDINELEMENTSOFFUZZYSETSX1X2ANDTHEELEMENTSOFFUZZYSETUISDEFINEDASFOLLOWINGMEMBERSHIPFUNCTIONCIUJ0OTHERWISE03I3K1,2,349J13,23,374949LAYER443WKAND04I4/03K1K1WHEREXLTX2TARETHEINPUTSOFNEURALNETWORKS,WKISWEIGHTOFNEURALNETWORK,04ISTHEOUTPUTOFNEURALNETWORKSINWHICH04U,AI,B,JARETHECENTRALVALUESOFGAUSSIANMEMBERSHIPFUNCTIONLEARNINGALGORITHMSOFTHENEURALNETWORKSCONTROLLERISBASEDONGRADIENTDESCENTBYMEANSOFERRORSIGNALBACKPROPAGATIONMETHODTHEERRORBACKPROPAGATIONALGORITHMSACCOMPLISHSYNAPTICWEIGHTADJUSTMENTTHROUGHMINIMIZATIONOFCOSTFUNCTION5MALGORITHMFORRECURRENTNEURALNETWORKSSUSPENSIONDYNAMICALMODELINGARECURRENTNEURALNETWORKDESIGNEDTOAPPROXIMATETOTHEACTUALOUTPUTOFSUSPENSIONYTISTHREELAYERNEURALNETWORKWITHONELOCALFEEDBACKLOOPINTHEHIDDENLAYER,WHOSEARCHITECTURESARESHOWNINFIGURE3THEPROPERTYTHATISOFPRIMARYSIGNIFICANCEFORRECURRENTNEURALNETWORKISTHEABILITYOFTHENETWORKTOLEARNFROMITSENVIRONMENTANDTOIMPROVEITSPERFORMANCESBYMEANSOFPROCESSOFADJUSTMENTSAPPLIEDTOITSWEIGHTSTHERECURRENTNETWORKWITHINPUTSIGNALIITUTANDI2TYT1HASOUTPUTYTBYLOCALFEEDBACKLOOPNEURONINTHEHIDDENLAYERWHOSEOUTPUTSUMISSJTCORRESPONDINGTOTHENEURONJTH3FIG2SCHEMATICOFNEURALNETWORKSCONTROLLERFORADAPTIVESUSPENSIONWHEREUEUTHEINPUT/OUTPUTISPRESENTEDASFOLLOWSACCORDINGTOFIGURE2LAYER1I1XTANDOXITI1,2LAYER2I2TAI2/B2ANDOEPXI1,2J1,2,37LAYER3I13TUX2QIANDFIG3SCHEMATICOFNEURALNETWORKSMODELINGOFSUSPENSIONSYSTEM4SY,WITWJD_XJT_1I1ITWJXJT_LQYJT1WXITJL561796WHEREWI,WAREWEIGHTOFTHERECURRENTNEURALNETWORK,XJTISOUTPUTOFNEURONWITHLOCALFEEDBACKLOOPNEURONINTHEHIDDENLAYER,P,QAREINPUTNEURONNUMBERANDFEEDBACKNEURONNUMBERRESPECTIVELYTHEACTIVATIONFUNCTIONFORBOTHINPUTNEURONSANDOUTPUTNEURONSISLINEARFUNCTION,WHILETHEACTIVATIONFORNEURONSINTHEHIDDENLAYERISSIGMOIDFUNCTIONHEOBJECTIVEFUNCTIONETCANBEDEFMEDINTHETERMSOFTHEERRORSIGNALETASET_YTYT21E2T722THATIS,ETISTHEINSTANTANEOUSVALUEOFTHEERRORENERGYTHESTEPBYSTEPADJUSTMENTSTOTHESYNAPTICWEIGHTSOFNEURONARECONTINUEDUNTILTHESYSTEMREACHSTEADYSTATE,IETHESYNAPTICWEIGHTSAREESSENTIALLYSTABILIZEDDIFFERENTIATINGETWITHRESPECTTOWEIGHTVECTORWYIELDSAET_8ET0Y8FROMEXPRESSION1,2AND3,DIFFERENTIATINGAT0DIWITHRESPECTTOTHEWEIGHTVECTORW1W,W,YRESPECTIVELYYIELDSASTXTASTWOAX1QWAXITAWJJAWJFROM4,5AND6,ANALYZINGVALUEOFSYNAPTICWEIGHTISDETERMINEDBYWT1WTQET89T12WHEREQTHELEANINGRATEPARAMETER,ADETAILEDCONVERGENCEANALYSISOFTHERECURRENTTRAININGALGORITHMISRATHERCOMPLICATEDTOACQUIRETHELEANINGRATEPARAMETERVALUEACCORDINGTOEXPRESSION13,THEWEIGHTVECTORWFORRECURRENTNEURALNETWORKCANBEADJUSTEDWEESTABLISHATHELYAPUNOVFUNCTIONASFOLLOWSVT1/2E2T,WHOSECHANGEVALUEAVTCANBEDETERMINEDAFTERSOMETITERATIONS,INTHESENSETHAT13WEHAVENOTICEDTHATTHEERRORSIGNALETAFTERSOMETITERATIONSCANBEEXPRESSEDASFOLLOWSFROMEXPRESSION13AND14,AETAOTAETAET,AWQET77ET,THEAW“O“WAWO“WLYAPUNOVFUNCTIONINCREMENTCANDETERMINEDAFTERSOMETITERATIONSASFOLLOWS14MTTQTV2ETVTWHERET22JT16T2A10LPQ25L0TLL2QL277O220W97MAXAT29IFQF2,THENAVTO,WAX1TDANDAWJX1TUXIYIELDSRESPECTIVELYRECURRENTFORMULASAX1TAFSTFXXTT11AX1O,WJDAXITANIAFSTWATI4LANIAX1O11AVN0HAVINGCOMPUTEDTHESYNAPTICADJUSTMENT,THEUPDATEDNAMELYTHERECURRENTTRAININGALGORITHMISCONVERGENTIVROADTESTANDRESULTSANALYSESTOMAKEADEMONSTRATIONTHEVALIDITYOFNEURALCONTROLALGORITHMPROPOSEDINTHEPAPER,ANEXPERIMENTALMINIBUSSUSPENSIONWITHMRFLUIDSHOCKABSORBERHASBEENMANUFACTUREDINCHINATHEMINIBUSADAPTIVESUSPENSIONSYSTEMCONSISTSOFADSPMICROPROCESSOR,8ACCELERATIONSENSORS,4MRFLUIDSHOCKABSORBERS,AND1CONTROLLABLEELECTRICCURRENTPOWERWITHINPUTVOLTAGE12VTHEDSPMICROPROCESSORRECEIVESSUSPENSIONVIBRATIONSIGNALINPUTFROMACCELEROMETERSMOUNTEDRESPECTIVELYSPRUNGMASSANDUNSPRUNGMASSINACCORDANCEWITHVIBRATIONSIGNALANDCONTROLSCHEMEINTHISPAPER,THEDSPMICROPROCESSORADJUSTSDAMPINGOFADAPTIVESUSPENSIONBYAPPLICATIONCONTROLSIGNALTOTHECONTROLLABLEELECTRICCURRENTPOWERCONNECTEDTOELECTROMAGNETICCOILINMRFLUIDSHOCKABSORBERSMAGNETICFIELDPRODUCEDBYTHEELECTROMAGNETICCOILINMRFLUIDSHOCKABSORBERSCANDVARYDAMPINGFORCEINBOTHCOMPRESSIONANDREBOUNDBYADJUSTMENTOFFLOW1797II,VT12T1E2T2BEHAVIORSOFMRFLUIDSINDAMPINGCHANNELSRAODTESTONMINIBUSADAPTIVESUSPENSIONBASEDNEURALNETWORKSCONTROLPRESENTEDINTHISPAPERARECARRIEDOUTINDCLASSROADSURFACESRESPECTIVELYINRUNNINGVELOCITY30,40,50KM/HDURINGROADTEST,EXPERIMENTALMINIBUSRUNSEACHTESTCONDITIONATACONSTANTSPEEDTHETESTEXPERIMENTSOFADAPTIVESUSPENSIONWITHNEURALNETWORKSANDPASSIVESUSPENSIONSYSTEMWERECARRIEDOUTREPEATEDLYUNDERSAMEROADSURFACEANDRUNNINGVELOCITYTESTRESULTSLISTEDINTABLE1HAVESHOWNTHATTHEADAPTIVESUSPENSIONWITHNEURALNETWORKSCANREDUCEVIBRATIONPOWERSPECTRALDENSITIESOFBOTHSPRUNGMASSANDUNSPRUNGMASSFIGURE4ISTHEMINBUSSUSPENSIONVIBRATIONPOWERSPECTRALDENSITIESOFBOTHSPRUNGMASSANDUNSPRUNGMASSWITHPASSIVEANDADAPTIVESUSPENSIONSYSTEMBYDCLASSROADSURFACEITISCLEARTHATNEURALNETWORKSCONTROLIMPROVESPERFORMANCESOFMINIBUSSUSPENSIONWITHMAINLYIMPROVEMENTSOCCURRINGABOUTSPRUNGMASSRESONANCEPEAKTHEPOWERSPECTRALDENSITIESINDICATETHATTHEADAPTIVESUSPENSIONSYSTEMWITHNEURALNETWORKSCONTROLCANREDUCEMINIBUSVIBRATIONGREATLYCOMPAREDWITHPASSIVESUSPENSIONIFEXCELLENTFIZZYCONTROLRULESANDRATIONALMODELINGOFSHOCKABSORBERANDSUSPENSIONCANBEOBTAINED,THEADAPTIVESUSPENSIONSYSTEMWITHNEURALNETWORKSCONTROLWILLIMPROVEFARTHERRIDECOMFORTANDROADHOLDINGANDHANDLINGSTABILITYOFAUTOMOBILEINTHEFUTURETABLEIMINBUSSUSPENSIONROADTESTRESULTSSPRUNGMASSANDUNSPRUNGMASSACCELERATIONRMSVALUESDCLASSROADSPEED301KM/H401M/H50KMLHPASSIVECONTROLREDUCEPASSIVECONTROLREDUCEPASSIVECONTROLREDUCE|MASS1037560325213404140034491670469403966155MASSPG160111426610918975166031252346820652120MASSIC,4A|1,T0RI01101LO1FRY0QGCO1OKAIDELAR10F1FRCQVOFIG4MINBUSSUSPENSIONVIBRATIONPOWERSPECTRALDENSITIESOFSPRUNGMASSLEFTANDUNSPRUNGMASSRIGHTWITHCONTROLANDPASSIVERUNNINGSPEED40KM/HVCONCLUSIONSINTHISPAPER,ANEWRECURRENTNEURALNETWORKSORIENTEDSUSPENSIONMODELANDNEUROFUZZYCONTROLSCHEMESFORTHEMINIBUSSUSPENSIONSYSTEMWEREINVESTIGATEDUPONTHEREQUIREMENTOFUSING8ACCELERATIONSENSORS,ADSPCONTROLLERWITHGAINSCHEDULINGWASDEVELOPEDCONSIDERINGTHECOMPLEXITYOFTHEMRFLUIDSHOCKABSORBER,THEACTUATORDYNAMICSHASBEENINCORPORATEDDURINGTHEHARDWAREINTHELOOPSIMULATIONSITWASDEMONSTRATEDTHATTHEADAPTIVECONTROLSYSTEMCOULD1798ACHIEVEACOMPETITIVECONTROLPERFORMANCEBYADOPTINGTHENEUROFUZZYCONTROLSCHEMESANDRECURRENTNEURALNETWORKSORIENTEDSUSPENSIONBECAUSETHECONTROLLAWDESIGN,THEGAINSCHEDULINGSTRATEGY,ANDTHEHARDWAREINTHELOOPSIMULATIONMETHODDEVELOPEDINTHISPAPERARERESTRICTEDTOAMINBU
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 物流配送车辆运输安全管理
- 物业管理法律法规与实务(标准版)
- 标后管理制度
- 办案安全制度
- 2026年温州大学商学院临聘工作人员招聘备考题库及参考答案详解一套
- 2026年永康市中医院儿童康复治疗师招聘备考题库及参考答案详解
- 初中语文七下必考名著《骆驼祥子》各章节重点考察题
- 2026年青海物产爆破技术服务有限公司招聘备考题库完整参考答案详解
- 2026年某三甲医院招聘后勤辅助岗备考题库及参考答案详解一套
- 安全警示周培训课件
- 广东省深圳市龙华区2024-2025学年七年级上学期期末历史试题(含答案)
- 74粉色花卉背景的“呵护女性心理健康遇见更美的自己”妇女节女性健康讲座模板
- 2026长治日报社工作人员招聘劳务派遣人员5人备考题库新版
- 煤矿兼职教师培训课件
- 2025至2030中国组网专线行业调研及市场前景预测评估报告
- 2025年南京科技职业学院单招职业适应性考试模拟测试卷附答案
- 湖北省武汉市东湖新技术开发区 2024-2025学年七年级上学期期末道德与法治试卷
- 挡土墙施工安全培训课件
- 慢性肾脏病(CKD)患者随访管理方案
- 成人学历提升项目培训
- 应急预案批复意见
评论
0/150
提交评论