




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
.6.1平方根(第3课时)授课人:蟠龙中学 黄光亮教学目标1、理解平方根的意义,掌握平方根的性质,能正确表示一个数的平方根并进行开平方运算,清楚算术平方根与平方根的区别与联系。2、理解开平方运算和乘方运算之间的互逆关系。3、培养学生的探究能力和归纳问题的能力。教学重难点重点:平方根的概念和求一个非负数的平方根。难点:平方根和算术平方根的联系与区别。教学过程一、复习引入师:前面我们学习了算术平方根,大家掌握得怎么样呢?请完成下列填空。1、填空(1)1的算术平方根是 (2)的算术平方根是 ,(3) ,(4) 2、王东同学说:“如果一个数的平方等于9,那么这个数一定是3”,你认为他说的对吗? 师:从前面我们知道,这个数可以是3,除了3以外,有没有别的数的平方也等于9呢?学生思考并回答: ,因此平方等于9的数是3或-3也就是说:如果,那么二、定义探究师:把,那么放入表格就可以表示成: 你能快速完成剩下的表格吗?填表:916490.36学生活动:先独立完成表格,再小组合作交流结果,师生合作探究:第一行表示某个数的平方值,第二行表示要求的某个数的值是多少。老师给出平方根的定义:一般地,如果一个数的平方等于a,那么这个数就叫做a的平方根.即:如果x2=a,那么x叫做a的平方根。例如:3和-3是9的平方根,简记为是9的平方根。求一个数a的平方根的运算,叫做开平方。师:怎么样才能对一个数进行准确开平方运运算呢?看下图。三、观察填表,认识开平方根运算:(课本165页中的图10.1-2)。平方开平方学生活动:先完成前面这个图,再由前面这个图完成后面的图,思考两种运算有什么关系?师生归纳: 图中的两个图描述了平方与开平方互为逆运算的运算过程。例如:3的平方等于9,9的平方根是3,所以平方与开平方互为逆运算。根据这个互逆运算的关系我们可以进行开平方运算及检验运算结果是否正确。设计意图:让学生体验平方和开平方的互逆关系,并根据这个关系说出1,4,9的平方根。师:学习了开平方运算,我们会求一个数的平方根了吗?试一试。例1求下列各数的平方根: (1)100;(2) ;(3)0.25;(4) ;(5)0解:(1)因为 所以100的平方根是 即 (2)因为 所以的平方根是师生一起完成第一小题的,后面小题由学生演板。设计意图:通过此例使学生明白平方根可以从平方运算中求得,并能规范地表述一个数的平方根.这个例题也为后面探讨平方根的特征做好准备。四、观察归纳,总结平方根的性质想一想:通过学习上面平方根的定义和求一个数的平方根的过程,你发现一个数的平方根有什么特征了吗?请同学们思考并讨论下列问题: (1)正数的平方根有什么特点?(2)0的平方根是多少?(3)负数有平方根吗?归纳平方根的性质:1、正数的平方根有两个,它们互为相反数;(其中正的平方根是算术平方根) 2、0的平方根是0;3、负数没有平方根。下列各式分别表示什么含义,值是多少?(1) (2) (3)五、平方根和算术平方根的比较师:同学刚才说第一个是算术平方根,第三个是平方根,那平方根和算术平方根有哪些区别和联系呢思考:平方根和算平方根有什么异同呢?先独立思考再小组讨论。平方根算术平方根区别定义不同如果一个数的平方等于a,这个数就叫做a的平方根如果一个正数x的平方等于a,那么这个正数就叫做a的算术平方根个数不同正数a的平方根有两个正数a的算术平方根有一个符号不同用表示用表示联系1.平方根包含算术平方根,算术平方根是平方根中非负的那一个.2.存在条件相同.只有非负数才有平方根和算术平方根.3.0的平方根和算术平方根均为0六、巩固练习:1、判断下列说法是否正确:(1)0的平方根是0;( )(2)1的平方根是1;( )(3)-1的平方根是-1; ( )(4)0.01是0.1的一个平方根。 ( )2、填空:(1)已知一个数的平方根是它本身,则这个数是 。(2)36的平方根是 ;(3) 的平方根是 ;(4)如果一个正数的算术平方根是4,那么它的另一个平方根是 ;(5)平方根概念的起源与几何中的正方形有关,如果 一个正方形的面积为7,那么这个正方形的边长是 。七、拓展提高1、 的算术平方根是 ;平方根是 ;2、 则 ;3、求下列各式中x的值(1)x2=64, (2) (3)4、已知m的平方根是 2a-3和a-12,求a和m的值。八、课堂小结:本节课你学习了哪些知识?在探索知识的过程中,你用了哪些方法? 知识方面:1、平方根的概念、性质、表示方法、求法. 2、了解算术平方根与平方根的区别与联系。 思维方法:平方运算和开平方运算互为逆运算,可以互相检验. 探究策略:由特殊到一般,再由一般到特殊,类比思想,是发现问题和解决问题的基本数学思想方法.九、作业布置必做:习题6.1 第3题、第4题、第8题。选做:第11题 设计思想 本课主要是在算术平方根的基础上建立平方根的概念,要以等式x2=a和已有算术平方根概念为基础,并使学生明确平方根与算术平方根之间的联系与区别
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年慈善总会会计考试题库
- 2025年婚姻家庭咨询师初级笔试题库
- 2025年工业安全工程师面试题
- 2025年安全生产安全生产考试题库
- 2025年宁夏安全员考试重点题库及答案
- 2025年树葬行业应用与生态礼仪师考试预测题
- 2025年托育保健医生考试重点题解析
- 2025年山西C类安全员考试答案解析
- 2025年食堂安全管理员笔试冲刺题
- 2025年人力资源管理师综合素质评定考试试题及答案解析
- 大学营养与健康
- 进度质量考核管理办法
- 2025年宜宾市中考语文试题卷(含答案详解)
- 悬灸护理课件
- 肛肠科临床诊疗指南
- 自动化分选装置-洞察及研究
- 2025年中国白胡椒行业市场运营现状及投资方向研究报告
- 通海翡翠华庭建设项目 水土保持方案报告表
- 2025至2030年中国特种石墨行业市场发展态势及投资机会研判报告
- 小学科学新大象版一年级上册全册教案(2024秋)
- 乡村治理与乡村振兴规划
评论
0/150
提交评论