




已阅读5页,还剩41页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
二次函数y=ax2+bx+c图象和性质,一般地,抛物线y=a(x-h)+k与y=ax的相同,不同,2,2,知识回顾:,形状,位置,y=ax,2,y=a(x-h)+k,2,上加下减,左加右减,知识回顾:,抛物线y=a(x-h)2+k有如下特点:,1.当a0时,开口,当a0时,开口,,向上,向下,2.对称轴是;,3.顶点坐标是。,直线X=h,(h,k),直线x=3,直线x=1,直线x=2,直线x=3,向上,向上,向下,向下,(-3,5),(1,-2),(3,7),(2,-6),你能说出二次函数y=x6x21图像的特征吗?,2,1,2,探究:,如何画出的图象呢?,我们知道,像y=a(x-h)2+k这样的函数,容易确定相应抛物线的顶点为(h,k),二次函数也能化成这样的形式吗?,配方,y=(x6)+3,2,1,2,你知道是怎样配方的吗?,(1)“提”:提出二次项系数;,(2)“配”:括号内配成完全平方;,(3)“化”:化成顶点式。,归纳,二次函数y=x6x+21图象的画法:,(1)“化”:化成顶点式;,(2)“定”:确定开口方向、对称轴、顶点坐标;,(3)“画”:列表、描点、连线。,2,1,2,.,画二次函数的图象取点时先确定顶点,再在顶点的两旁对称地取相同数量的点,一般取57个点即可。,注意,求二次函数y=ax+bx+c的对称轴和顶点坐标,函数y=ax+bx+c的顶点是,配方:,提取二次项系数,配方:加上再减去一次项系数绝对值一半的平方,整理:前三项化为平方形式,后两项合并同类项,化简:去掉中括号,这个结果通常称为求顶点坐标公式.,函数y=ax+bx+c的对称轴、顶点坐标是什么?,1.说出下列函数的开口方向、对称轴、顶点坐标:,函数y=ax+bx+c的对称轴、顶点坐标是什么?,对于y=ax2+bx+c我们可以确定它的开口方向,求出它的对称轴、顶点坐标、与y轴的交点坐标、与x轴的交点坐标(有交点时),这样就可以画出它的大致图象。,方法归纳,.,二次函数y=ax2+bx+c(a0)的图象和性质,.顶点坐标与对称轴,.位置与开口方向,.增减性与最值,抛物线,顶点坐标,对称轴,位置,开口方向,增减性,最值,y=ax2+bx+c(a0),y=ax2+bx+c(a0B.0,5.若把抛物线y=x2-2x+1向右平移2个单位,再向下平移3个单位,得抛物线y=x2+bx+c,则()A.b=2c=6B.b=-6,c=6C.b=-8c=6D.b=-8,c=18,B,B,6.若一次函数y=ax+b的图象经过第二、三、四象限,则二次函数y=ax2+bx-3的大致图象是(),7.在同一直角坐标系中,二次函数y=ax2+bx+c与一次函数y=ax+c的大致图象可能是(),C,C,二次函数y=ax2+bx+c(a0)的图象和性质,.顶点坐标与对称轴,.位置与开口方向,.增减性与最值,抛物线,顶点坐标,对称轴,位置,开口方向,增减性,最值,y=ax2+bx+c(a0),y=ax2+bx+c(a0时,开口向上,在对称轴左侧,y都随x的增大而减小,在对称轴右侧,y都随x的增大而增大.a0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 辽宁省东港市2026届化学九年级第一学期期中质量跟踪监视模拟试题含解析
- 监狱护栏网施工方案
- 唐山市重点中学2026届九年级化学第一学期期中达标检测试题含解析
- 2026届陕西省西安高新一中学英语九年级第一学期期末联考试题含解析
- 2026届内蒙古伊金霍洛旗化学九年级第一学期期中综合测试试题含解析
- 2026届辽宁省大石桥市水源镇九一贯制学校九年级化学第一学期期中经典试题含解析
- 农民果园承包经营合同书5篇
- 2026届辽宁省丹东二十九中学九上化学期中质量检测模拟试题含解析
- 工业园区租赁合同终止及环保措施协议
- 离婚协议书起草与婚姻关系解除纠纷解决合同
- 耗材产品售后方案(3篇)
- 2025年全国保密教育线上培训考试试题库(含答案)
- DGTJ08-2004B-2020 建筑太阳能光伏发电应用技术标准
- 产伤性阴道血肿护理课件
- 校园周边安全管理办法
- 制冰厂可行性研究报告
- 腕部损伤的护理课件
- 营销沟通技巧培训
- oa数据安全管理制度
- 中医诊所消毒管理制度
- 旋风除尘器设计选型
评论
0/150
提交评论