已阅读5页,还剩35页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2第二型曲线积分,第二型曲线积分与第一型曲线积分不同的是在有方向的曲线上定义的积分,这是由于第二型曲线积分的物理背景是求变力沿曲线作的功,而这类问题显然与曲线的方向有关.,三、两类曲线积分的联系,一、第二型曲线积分的定义,二、第二型曲线积分的计算,返回,一第二型曲线积分的定义,在物理中还遇到过另一,种类型的曲线积分问题.,例如一质点受力,点A移动到点B,求力,所作的功,见图,20-2.,那么,其中,所求的功.这种类型的和式极限就是下面所要讨论,的第二型曲线积分.,成n个小曲线段,的坐标为并记,曲线积分,记为,或,上述积分(1)也可写作,或,为书写简洁起见,(1)式常简写成,或,式可写成向量形式,若L为封闭的有向曲线,则记为,或,对质点所作的功为,若L为空间有向可求长曲线,为定义在L上的函数,则可按上述办法类,似地定义沿空间有向曲线L上的第二型曲线积分,并记为,或简写成,当把,看作三维向量时,(4)式也可表示成(3)式的向量形式.,第二型曲线积分与曲线L的方向有关.对同一曲线,当方向由A到B改为由B到A时,每一小曲线段的,有,弧长的乘积,它与曲线L的方向无关.这是两种类型,曲线积分的一个重要区别.,类似与第一型曲线积分,第二型曲线积分也有如下,一些主要性质:,1,也存在,且,也存在,且,二第二型曲线积分的计算,第二型曲线积分也可化为定积分来计算.,设平面曲线,的第二型曲线积分,读者可仿照1中定理20.1的方法分别证明,由此便可得公式(6).,对于沿封闭曲线L的第二型曲线积分(2)的计算,可,在L上任意选取一点作为起点,沿L所指定的方向前,进,最后回到这一点.,例1计算,其中L分别沿图,20-3中的路线:,(i)直线段,(ii),故由公式(6)可得,(iii)这里L是一条封闭曲线,故可从A开始,应用上段,加即可得到所求之曲线积分.,所以,的性质2,分别求沿上的线积分然后相,所以,沿直线的线积分可由(i)及公式(5)得到:,(ii)沿直线,(iii)沿封闭曲线,解(i),(ii),一段上与(ii)一样是,的一段.所以,(见(ii),沿空间有向曲线的第二型曲线积分的计算公式也与,(6)式相仿.设空间有向光滑曲线L的参量方程为,因此,则,这里要注意曲线方向与积分上下限的确定应该一致.,L是螺旋线:,例3计算第二型曲线积分,上的一段(参见图205).,解由公式(7),解如本节开头所述,在空间曲线L上力F所作的功,为,(i)由于,的交线,若面对x轴正向看去,L是沿逆时针方向的,求,(i),(ii),解L的参数方程为,因此,,(ii),由对称性,,上的连续,的折线.,令,就有,就有,.,令,于是,因此,注例6告诉我们曲线上的积分可用折线上的积分来,逼近.,*三.两类曲线积分的联系,在规定了曲线方向之后,可以建立它们之间的联系.,的有向光滑曲线,它以弧长s为参数,虽然第一型曲线积分与第二型曲线积分来自不同的,物理原型,且有着不同的特性,但在一定条件下,如,于是,曲线L上每一点的切线方,每一点的切线方向余弦是,上的连续函数,则由(6),式得,最后一个等式是根据第一型曲线积分化为定积分的,公式.,注当(9)式左边第二型曲线积分中L改变方向时,积,分值改变符号,相应在(9)式右边第一型曲线积分中,曲线上各点的切线方向
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 房屋退组协议书模板
- 房源独家出售协议书
- 房租违建改造协议书
- 手机押金协议书范本
- 打印机购销合同范本
- 打杂工劳务合同范本
- 托管入学须知协议书
- 专题22.17 相似三角形动点问题(分层练习)(综合练)(含答案)-沪科版(2024)九上
- 吸氧操作流程考试试题(附参考答案)
- 汽车维修技术员职业技能考试试题及答案解析
- 2025年行政事业单位内部控制规范竞赛题
- 初中生必背古诗文61首-带拼音带分隔符
- 2025年中医健康管理服务合同模板
- 民航货运员的业务知识
- 医疗用地申请报告范文
- 《公路跨海桥梁养护技术规范》(JTG-T 5124-2022)
- 2024秋期国家开放大学《国际法》一平台在线形考(形考任务1至5)试题及答案
- 父母与孩子的约定协议书范本
- DL-T804-2014交流电力系统金属氧化物避雷器使用导则
- GB/T 18910.11-2024液晶显示器件第1-1部分:总规范
- (高清版)WST 230-2024 实时荧光聚合酶链反应临床实验室应用指南
评论
0/150
提交评论