




已阅读5页,还剩33页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
DiscretemathematicsDiscretei.e.nocontinuousSettheory,Combinatorics,Graphs,ModernAlgebra(Abstractalgebra,Algebraicstructures),Logic,classicprobability,numbertheory,AutomataandFormalLanguages,Computabilityanddecidabilityetc.,Beforethe18thcentury,Discrete,quantityandspaceastronomy,physicsExample:planetaryorbital,NewtonsLawsinThreeDimensionscontinuousmathematics:calculus,EquationsofMathematicalPhysics,FunctionsofRealVariable,FunctionsofcomplexVariableDiscrete?stagnancy,inthethirtiesofthetwentiethcentury,TuringMachinesFiniteDiscreteDataStructuresandAlgorithmDesignDatabaseCompilersDesignandAnalysisofAlgorithmsComputerNetworksSoftwareinformationsecurityandcryptographythetheoryofcomputationNewgenerationcomputers,Settheory,IntroductoryCombinatorics,Graphs,Algebtaicstructures,Logic.Thisterm:Settheory,IntroductoryCombinatorics,Graphs,Algebtaicstructures(Group,Ring,Field).Nextterm:Algebtaicstructures(LatticesandBooleanAlgebras),Logic,每周一交作业,作业成绩占总成绩的10%;平时不定期的进行小测验,占总成绩的20%;期中考试成绩占总成绩的20%;期终考试成绩占总成绩的50%,1.离散数学及其应用(英文版第5版)作者:KennethH.Rosen著出版社:机械工业出版社2.组合数学(英文版第4版)经典原版书库作者:(美)布鲁迪(Brualdi,R.A.)著出版社:机械工业出版社3,离散数学暨组合数学(英文影印版)DiscreteMathematicswithCombinatoricsJamesA.Anderson,UniversityofSouthCarolina,Spartanburg大学计算机教育国外著名教材系列(影印版)清华大学出版社,IntroductiontoSetTheory,TheobjectsofstudyofSetTheoryaresets.Assetsarefundamentalobjectsthatcanbeusedtodefineallotherconceptsinmathematics.GeorgCantor(1845-1918)isaGermanmathematician.Cantors1874paper,OnaCharacteristicPropertyofAllRealAlgebraicNumbers,marksthebirthofsettheory.paradox,twentiethcenturyaxiomaticsettheorynaivesettheoryConceptRelation,function,cardinalnumberparadox,Chapter1BasicConceptsofSets,1.1SetsandSubsetsWhatareSets?AcollectionofdifferentobjectsiscalledasetS,ATheindividualobjectsinthiscollectionarecalledtheelementsofthesetWewrite“tA”tosaythattisanelementofA,andWewrite“tA”tosaythattisnotanelementofA,Example:Thesetofallintegers,Z.Then3Z,-8Z,6.5ZThesesets,eachdenotedusingaboldfaceletter,playanimportantroleindiscretemathematics:N=0,1,2,thesetofnaturalnumberI=Z=,-2,-1,0,1,2,thesetofintegersI+=Z+=1,2,thesetofpositiveintegersI-=Z-=-1,-2,thesetofnegativeintegersQ=p/q|pZ,qZ,q0,thesetofrationalnumbersQ+,thesetofpositiverationalnumbersQ-,thesetofnegativerationalnumbers,1.Representationofset(1)Listingelements,Onewayistolistalltheelementsofasetwhenthisispossible.Example:ThesetAofoddpositiveintegerslessthan10canbeexpressedbyA=1,3,5,7,9。B=x1,x2,x3,(2)Setbuildernotion:Wecharacterizethepropertyorpropertiesthattheelementsofthesethaveincommon.Example:ThesetAofoddpositiveintegerslessthan10canbeexpressedbyA=x|xisanoddpositiveintegerlessthan10Example:C=x|x=y3,yZ+Cdescribesthesetofallcubesofpositiveintegers.D=x|-1x2,(3)RecursivedefinitionRecursivedefinitionsofsetshavethreesteps:1)Basicstep:Specifysomeofthebasicelementsintheset.2)recursivestep:Givesomerulesforhowtoconstructmoreelementsinthesetfromtheelementsthatweknowarealreadythere.3)closedstep:Therearenootherelementsinthesetexceptthoseconstructedusingsteps1and2.,Example:ThesetofevennonnegativeintegersE=x|x0,andx=2y,whereyZ(1)Basicstep:0E+。(2)Recursivestep:IfnE+,thenn+2E+.(3)Closedstep:TherearenootherelementsinthesetEexceptthoseconstructedusingsteps(1)and(2).Example:(1)Basicstep:3S。(2)Recursivestep:IfxandyS,thenx+yS。(3)Closedstep:TherearenootherelementsinthesetSexceptthoseconstructedusingsteps(1)and(2).S=?S=y|y=3x,xZ+,Letai,sequencesoftheforma1a2anareoftenincomputerscience.Thesefinitesequencesarealsocalledstrings.ThelengthofthestringSisthenumberoftermsinthisstring.Theemptystring,denotedby,isthestringthathasnoterms.Theemptystringhaslengthzero.Ifx=a1a2an,andy=b1b2bmarestrings,whereai,bj(1in,1jm),wedefinethecatenationofxandyasthestringa1a2anb1b2bm.Thecatenationofxandyiswrittenasxy,andisanotherstringfrom,i.e.xy=a1a2anb1b2bm.Notex=xandx=x.,Letbeanalphabet,wecanconstructtheset+consistingofallfinitenonemptystringofelementsof:(1)Basicstep:Ifa,thena+.(2)Recursivestep:Ifaandx+,thenax+.(3)Closedstep:Therearenootherelementsintheset+exceptthoseconstructedusingsteps(1)and(2).+elementorstring:infiniteLengthofstring:finite,1,2,3,Letbeanalphabet,wecanconstructtheset*consistingofallfinitestringofelementsof:(1)Basicstep:*.(2)Recursivestep:Ifx*andathenxa*.(3)Closedstep:Therearenootherelementsintheset*exceptthoseconstructedusingsteps(1)and(2).,Arithmeticexpressions(B)Anumeralisanarithmeticexpression.(R)Ife1ande2arearithmeticexpressions,thenallofthefollowingarearithmeticexpressions:e1+e2,e1e2,e1*e2,e1/e2,(e1)(C)Therearenootherarithmeticexpressionsexceptthoseconstructedusingsteps(1)and(2).,A=1,3,5,7,9,B=x1,x2,x3,finiteelements,53C=x|x=y3,yZ+,infiniteelementsAsetSiscalledfinitesetifithasndistinctelements,wherenN.Inthiscase,niscalledthecardinalityofSandisdenotedby|S|.Asetthatisnotfiniteiscalledinfiniteset.*,+,C,D,Sareinfinitesets,A,Barefinitesets.P=x|xisanprimenumberlessthan6,2,3,5,|P|=3,Example:A=x|x2+1=0,andxisanrealnumber,Noelementemptyset,|A|=0.Thesetthathasnoelementsinitisdenotedbyorthesymbolandiscalledtheemptyset.Note:isnotanemptyset.Itisasetwithoneelementwhichtheelementistheemptyset.,but.universalsetTheuniversalsetisthesetofallelementsunderconsiderationinagivendiscussion.WedenotetheuniversalsetbyU.,(1)Theorderinwhichtheelementsofasetarelistedisnotimportant.a,b,c,a,c,b,b,a,c,b,c,a,c,a,b,andc,b,aareallrepresentationsofthesameset.(2)Inthelistingoftheelementsofaset,repeatedelementsarentallowed.(3)AsetcanbeanelementofanothersetExample:S=a,b,a,b,c,d,eNote:a,b,cisalsoasetconsistingofelementsa,b,c。a,b,andcarentelementsofS.,Example:LetS=,。ElementsofSareand,2.SubsetsDefinition1.1:LetAandBaretwosets.IfeveryelementofAisalsoanelementofB,thatis,ifwheneverxAthenxB,wesaythatAisasubsetofBorthatAiscontainedinB,andwewriteAB。IfthereisanelementofAthatisnotinB,thenAisnotasubsetofB,andwewriteAB.,VennDiagramsInVenndiagramstheuniversalsetUisrepresentedbyarectangle,whilesetswithinUarerepresentedbycircles.,AB,AB,BA,Example:A=x|-1x2.0.5A,but0.5isnotaninteger,soA=x|-1x2Z,ZQ,(1)ForanysetA,A.(2)IfAB,andBC,thenAC,Definition1.2:LetAandBbesets.WesaythatAequalsB,writtenA=B,wheneverforanyx,xAifonlyifxB.IfAandBarenotequal,wewriteAB.ItiseasytoseethatA=BifonlyifABandBADefinition1.3:IfABandAB,wewriteABandsaythatAisapropersubsetofB.,Example:aa,b。Example:S1=a,S2=a,S3=a,aaS3,S1S3aS3,S2S3,S1S3,S1S2,Theorem1.1:ForanysetA,(1)A,(2)AAA=1,2,3,1,2,3,1,2,1,3,2,3and1,2,3aresubsetsofApowersetofADefinition1.4:GivenasetA,thepowersetofAisthesetofallsubsetsofthesetA.ThepowersetofAisdenotedbyP(A).|A|=k,|P(A)|=?Theorem1.2:IfAisafiniteset,then|P(A)|=2|A|.,1.2OperationsonSets,1.DefinitionofoperationsonsetsDefinition1.5:LetAandBbetwosubsetsofuniversalsetU,(1)TheunionofAandB,writeAB,isthesetofallelementsthatareinAorB.i.e.AB=x|xAorxB,(2)TheintersectionofAandB,writeAB,isthesetofallelementsthatareinbothAandB.i.e.AB=x|xAandxB。,(3)ThedifferenceofAandB,writeA-B,isthesetofallelementsthatareinAbutarenotinB.i.e.A-B=x|xAandxB。,Example:A=1,2,3,4,5,B=1,2,4,6,C=7,8,U=1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 冠心病患者合并甲状腺功能异常的患病情况及危险因素分析
- 重难点解析人教版八年级上册物理物态变化《升华和凝华》专项训练练习题(含答案详解)
- 多源市政污泥热解碳化工艺中能量利用与能效提升研究
- “雅俗”观与南宋词风演进研究
- 消防设施施工质量检测与验收方案
- 水库坝前水流动力学分析与研究
- 难点解析-人教版八年级上册物理声现象《噪声的危害和控制》定向测试试题(含答案解析版)
- 建筑拆除前期风险评估方案
- 重难点解析人教版八年级上册物理物态变化《熔化和凝固》定向攻克试卷(含答案详解)
- 基于哈佛分析框架下泡泡玛特成长性的研究
- 第8课 《回忆鲁迅先生(节选)》 课件 2025-2026学年统编版语文八年级上册
- (正式版)JBT 11270-2024 立体仓库组合式钢结构货架技术规范
- 2021年新高考全国II卷英语真题
- 05G514-3 12m实腹式钢吊车梁(中级工作制 A4 A5 Q345钢)
- GB/T 8350-2008输送链、附件和链轮
- 羽毛球校本教材
- 【原创】课题专题讲座-《抓好朗读训练播下语感种子》PPT
- DZ∕T 0388-2021 矿区地下水监测规范
- 中学物理演示实验教学设计课件
- 省作家协会入会申请表
- 苏教版四年级上册数学第三单元观察物体试卷【含答案】
评论
0/150
提交评论