




已阅读5页,还剩33页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
DiscretemathematicsDiscretei.e.nocontinuousSettheory,Combinatorics,Graphs,ModernAlgebra(Abstractalgebra,Algebraicstructures),Logic,classicprobability,numbertheory,AutomataandFormalLanguages,Computabilityanddecidabilityetc.,Beforethe18thcentury,Discrete,quantityandspaceastronomy,physicsExample:planetaryorbital,NewtonsLawsinThreeDimensionscontinuousmathematics:calculus,EquationsofMathematicalPhysics,FunctionsofRealVariable,FunctionsofcomplexVariableDiscrete?stagnancy,inthethirtiesofthetwentiethcentury,TuringMachinesFiniteDiscreteDataStructuresandAlgorithmDesignDatabaseCompilersDesignandAnalysisofAlgorithmsComputerNetworksSoftwareinformationsecurityandcryptographythetheoryofcomputationNewgenerationcomputers,Settheory,IntroductoryCombinatorics,Graphs,Algebtaicstructures,Logic.Thisterm:Settheory,IntroductoryCombinatorics,Graphs,Algebtaicstructures(Group,Ring,Field).Nextterm:Algebtaicstructures(LatticesandBooleanAlgebras),Logic,每周一交作业,作业成绩占总成绩的10%;平时不定期的进行小测验,占总成绩的20%;期中考试成绩占总成绩的20%;期终考试成绩占总成绩的50%,1.离散数学及其应用(英文版第5版)作者:KennethH.Rosen著出版社:机械工业出版社2.组合数学(英文版第4版)经典原版书库作者:(美)布鲁迪(Brualdi,R.A.)著出版社:机械工业出版社3,离散数学暨组合数学(英文影印版)DiscreteMathematicswithCombinatoricsJamesA.Anderson,UniversityofSouthCarolina,Spartanburg大学计算机教育国外著名教材系列(影印版)清华大学出版社,IntroductiontoSetTheory,TheobjectsofstudyofSetTheoryaresets.Assetsarefundamentalobjectsthatcanbeusedtodefineallotherconceptsinmathematics.GeorgCantor(1845-1918)isaGermanmathematician.Cantors1874paper,OnaCharacteristicPropertyofAllRealAlgebraicNumbers,marksthebirthofsettheory.paradox,twentiethcenturyaxiomaticsettheorynaivesettheoryConceptRelation,function,cardinalnumberparadox,Chapter1BasicConceptsofSets,1.1SetsandSubsetsWhatareSets?AcollectionofdifferentobjectsiscalledasetS,ATheindividualobjectsinthiscollectionarecalledtheelementsofthesetWewrite“tA”tosaythattisanelementofA,andWewrite“tA”tosaythattisnotanelementofA,Example:Thesetofallintegers,Z.Then3Z,-8Z,6.5ZThesesets,eachdenotedusingaboldfaceletter,playanimportantroleindiscretemathematics:N=0,1,2,thesetofnaturalnumberI=Z=,-2,-1,0,1,2,thesetofintegersI+=Z+=1,2,thesetofpositiveintegersI-=Z-=-1,-2,thesetofnegativeintegersQ=p/q|pZ,qZ,q0,thesetofrationalnumbersQ+,thesetofpositiverationalnumbersQ-,thesetofnegativerationalnumbers,1.Representationofset(1)Listingelements,Onewayistolistalltheelementsofasetwhenthisispossible.Example:ThesetAofoddpositiveintegerslessthan10canbeexpressedbyA=1,3,5,7,9。B=x1,x2,x3,(2)Setbuildernotion:Wecharacterizethepropertyorpropertiesthattheelementsofthesethaveincommon.Example:ThesetAofoddpositiveintegerslessthan10canbeexpressedbyA=x|xisanoddpositiveintegerlessthan10Example:C=x|x=y3,yZ+Cdescribesthesetofallcubesofpositiveintegers.D=x|-1x2,(3)RecursivedefinitionRecursivedefinitionsofsetshavethreesteps:1)Basicstep:Specifysomeofthebasicelementsintheset.2)recursivestep:Givesomerulesforhowtoconstructmoreelementsinthesetfromtheelementsthatweknowarealreadythere.3)closedstep:Therearenootherelementsinthesetexceptthoseconstructedusingsteps1and2.,Example:ThesetofevennonnegativeintegersE=x|x0,andx=2y,whereyZ(1)Basicstep:0E+。(2)Recursivestep:IfnE+,thenn+2E+.(3)Closedstep:TherearenootherelementsinthesetEexceptthoseconstructedusingsteps(1)and(2).Example:(1)Basicstep:3S。(2)Recursivestep:IfxandyS,thenx+yS。(3)Closedstep:TherearenootherelementsinthesetSexceptthoseconstructedusingsteps(1)and(2).S=?S=y|y=3x,xZ+,Letai,sequencesoftheforma1a2anareoftenincomputerscience.Thesefinitesequencesarealsocalledstrings.ThelengthofthestringSisthenumberoftermsinthisstring.Theemptystring,denotedby,isthestringthathasnoterms.Theemptystringhaslengthzero.Ifx=a1a2an,andy=b1b2bmarestrings,whereai,bj(1in,1jm),wedefinethecatenationofxandyasthestringa1a2anb1b2bm.Thecatenationofxandyiswrittenasxy,andisanotherstringfrom,i.e.xy=a1a2anb1b2bm.Notex=xandx=x.,Letbeanalphabet,wecanconstructtheset+consistingofallfinitenonemptystringofelementsof:(1)Basicstep:Ifa,thena+.(2)Recursivestep:Ifaandx+,thenax+.(3)Closedstep:Therearenootherelementsintheset+exceptthoseconstructedusingsteps(1)and(2).+elementorstring:infiniteLengthofstring:finite,1,2,3,Letbeanalphabet,wecanconstructtheset*consistingofallfinitestringofelementsof:(1)Basicstep:*.(2)Recursivestep:Ifx*andathenxa*.(3)Closedstep:Therearenootherelementsintheset*exceptthoseconstructedusingsteps(1)and(2).,Arithmeticexpressions(B)Anumeralisanarithmeticexpression.(R)Ife1ande2arearithmeticexpressions,thenallofthefollowingarearithmeticexpressions:e1+e2,e1e2,e1*e2,e1/e2,(e1)(C)Therearenootherarithmeticexpressionsexceptthoseconstructedusingsteps(1)and(2).,A=1,3,5,7,9,B=x1,x2,x3,finiteelements,53C=x|x=y3,yZ+,infiniteelementsAsetSiscalledfinitesetifithasndistinctelements,wherenN.Inthiscase,niscalledthecardinalityofSandisdenotedby|S|.Asetthatisnotfiniteiscalledinfiniteset.*,+,C,D,Sareinfinitesets,A,Barefinitesets.P=x|xisanprimenumberlessthan6,2,3,5,|P|=3,Example:A=x|x2+1=0,andxisanrealnumber,Noelementemptyset,|A|=0.Thesetthathasnoelementsinitisdenotedbyorthesymbolandiscalledtheemptyset.Note:isnotanemptyset.Itisasetwithoneelementwhichtheelementistheemptyset.,but.universalsetTheuniversalsetisthesetofallelementsunderconsiderationinagivendiscussion.WedenotetheuniversalsetbyU.,(1)Theorderinwhichtheelementsofasetarelistedisnotimportant.a,b,c,a,c,b,b,a,c,b,c,a,c,a,b,andc,b,aareallrepresentationsofthesameset.(2)Inthelistingoftheelementsofaset,repeatedelementsarentallowed.(3)AsetcanbeanelementofanothersetExample:S=a,b,a,b,c,d,eNote:a,b,cisalsoasetconsistingofelementsa,b,c。a,b,andcarentelementsofS.,Example:LetS=,。ElementsofSareand,2.SubsetsDefinition1.1:LetAandBaretwosets.IfeveryelementofAisalsoanelementofB,thatis,ifwheneverxAthenxB,wesaythatAisasubsetofBorthatAiscontainedinB,andwewriteAB。IfthereisanelementofAthatisnotinB,thenAisnotasubsetofB,andwewriteAB.,VennDiagramsInVenndiagramstheuniversalsetUisrepresentedbyarectangle,whilesetswithinUarerepresentedbycircles.,AB,AB,BA,Example:A=x|-1x2.0.5A,but0.5isnotaninteger,soA=x|-1x2Z,ZQ,(1)ForanysetA,A.(2)IfAB,andBC,thenAC,Definition1.2:LetAandBbesets.WesaythatAequalsB,writtenA=B,wheneverforanyx,xAifonlyifxB.IfAandBarenotequal,wewriteAB.ItiseasytoseethatA=BifonlyifABandBADefinition1.3:IfABandAB,wewriteABandsaythatAisapropersubsetofB.,Example:aa,b。Example:S1=a,S2=a,S3=a,aaS3,S1S3aS3,S2S3,S1S3,S1S2,Theorem1.1:ForanysetA,(1)A,(2)AAA=1,2,3,1,2,3,1,2,1,3,2,3and1,2,3aresubsetsofApowersetofADefinition1.4:GivenasetA,thepowersetofAisthesetofallsubsetsofthesetA.ThepowersetofAisdenotedbyP(A).|A|=k,|P(A)|=?Theorem1.2:IfAisafiniteset,then|P(A)|=2|A|.,1.2OperationsonSets,1.DefinitionofoperationsonsetsDefinition1.5:LetAandBbetwosubsetsofuniversalsetU,(1)TheunionofAandB,writeAB,isthesetofallelementsthatareinAorB.i.e.AB=x|xAorxB,(2)TheintersectionofAandB,writeAB,isthesetofallelementsthatareinbothAandB.i.e.AB=x|xAandxB。,(3)ThedifferenceofAandB,writeA-B,isthesetofallelementsthatareinAbutarenotinB.i.e.A-B=x|xAandxB。,Example:A=1,2,3,4,5,B=1,2,4,6,C=7,8,U=1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年事业单位工勤技能-河北-河北土建施工人员五级(初级工)历年参考题库含答案解析(5套)
- 2025年事业单位工勤技能-河北-河北下水道养护工五级(初级工)历年参考题库含答案解析(5套)
- 2025年事业单位工勤技能-江苏-江苏放射技术员三级(高级工)历年参考题库含答案解析
- 2025年事业单位工勤技能-广西-广西汽车驾驶与维修员二级(技师)历年参考题库典型考点含答案解析
- 2025年事业单位工勤技能-广西-广西无损探伤工二级(技师)历年参考题库典型考点含答案解析
- 2025年事业单位工勤技能-广西-广西公路养护工二级(技师)历年参考题库含答案解析
- 2025年事业单位工勤技能-广东-广东食品检验工二级(技师)历年参考题库含答案解析
- 2025年事业单位工勤技能-广东-广东热处理工四级(中级工)历年参考题库含答案解析
- 2025年事业单位工勤技能-广东-广东垃圾清扫与处理工四级(中级工)历年参考题库典型考点含答案解析
- 2025年事业单位工勤技能-广东-广东信号工-机车信号设备维修三级(高级工)历年参考题库含答案解析
- GB/T 35267.4-2025清洗消毒器第4部分:内镜清洗消毒器
- 中职生单招语文必背古诗文(35篇)
- 新版2025心肺复苏术指南
- DB45T 1056-2014 土地整治工程 第2部分:质量检验与评定规程
- 2025年文明行车科目一试题及答案
- 电商快递合作协议样本
- 《朝花夕拾》名著导读+知识点+习题集合
- 柴油发电机组操作培训
- 《新能源材料与器件专业导论》课程教学大纲
- 养老院文娱活动意外应急预案
- 老年护理学试题库(含参考答案)
评论
0/150
提交评论