电子信息工程外文翻译.doc_第1页
电子信息工程外文翻译.doc_第2页
电子信息工程外文翻译.doc_第3页
电子信息工程外文翻译.doc_第4页
电子信息工程外文翻译.doc_第5页
免费预览已结束,剩余3页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2010届毕业生毕业设计外文翻译DC Switching Power Supply Protection TechnologyUlator DC voltage of the protection due to over-current protection DC switching regulator used in the price of more expensive high-power switching devices, the control circuit is also more complex, In addition, the load switching regulators are generally used a large number of highly integrated electronic systems installed devices. Transistors and integrated device tolerance electricity, less heat shocks. Switching Regulators therefore should take into account the protection of voltage regulators and load their own safety. Many different types of circuit protection, polarity protection, introduced here, the program protection, over-current protection, over-voltage protection, under-voltage protection and over-temperature protection circuit. Usually chosen to be some combination of protection, constitutes a complete protection system.DC switching regulator input are generally not regulated DC power supply. Operating errors or accidents as a result of the situation will take its wrong polarity, switching power supply will be damaged. Polarity protection purposes, is to make the switching regulator only when the correct polarity is not connected to DC power supply regulator to work at. Connecting a single device can achieve power polarity protection. Since the diode D to flow through switching regulator input total current, this circuit applied in a low-power switching regulator more suitable. Power in the larger occasion, while the polarity protection circuit as a procedure to protect a link, save the power required for polarity protection diodes, power consumption will be reduced. In order to easy to operate, make it easier to identify the correct polarity or not, collect the next light.Switching power supply circuit is rather complicated, basically can be divided into low-power and high-power part of the control part of the switch. Switch is a high-power transistors, for the protection of the transistor switch is turned on or off power safety, we must first modulator, amplifier and other low-power control circuit. To this end, the boot to ensure the correct procedures. Switching Regulators generally take the input of a small inductor, the input filter capacitor. Moment in the boot, filter capacitor will flow a lot of surge current, the surge current can be several times more than the normal input current. Such a large surge current may contact the general power switch or relay contact melting, and the input fuse fuse. In addition, the capacitor surge current will damage to shorten the life span of premature damage. To this end, the boot should be access to a current limiting resistor, through the current limiting resistor to capacitor charging. In order not to make the current limiting resistor excessive power consumption, thus affecting the normal switching regulator, and the transient process in the boot after a short period then automatically relays it to DC power supply directly to the switching regulator power supply. This circuit switching regulator called a soft start circuit.Switching regulator control circuit of the logic components required or op-amp auxiliary power supply. To this end, the auxiliary power supply must be in the switch circuit. This control circuit can be used to ensure the boot. Normal boot process is: to identify the polarity of input power, voltage protection procedures boot auxiliary power supply circuit and through current limiting resistor R of the switching regulator input capacitor C charge modulation switching regulator circuit, short-circuit current limiting resistor stability switching regulator.In the switching regulator, the machines just because the output capacitance, and charge to the rated output voltage value of the need for a certain period of time. During this time, sampling the output amplifier with low input voltage sampling, closed-loop regulation characteristics of the system will force the switching of the transistor conduction time lengthened, so that switching transistor during this period will tend to continuous conduction, and easily damaged. To this end, the requirements of this paragraph in the boot time, the switch to switch the output modulation circuit transistor base drive signal of the pulse width modulation, can guarantee the switching transistor by the cut-off switches are becoming more and more normal state, therefore the protection of the setting up of a boot to tie in with the soft start.When the load short-circuit, overload control circuit failure or unforeseen circumstances, such as would cause the flow of switching voltage regulator transistor current is too large, so that increased power tubes, fever, if there is no over-current protection device, high power switching transistor may be damaged. Therefore, the switching regulator in the over-current protection is commonly used. The most economical way is to use simple fuse. As a result of the heat capacity of small transistors, general fuse protection in general can not play a role in the rapid fuse common fuse. This method has the advantage of the protection of vulnerable, but it needs to switch transistor in accordance with specific security requirements of the work area to select the fuse specifications. This disadvantage is over-current protection measures brought about by the inconvenience of frequent replacement of fuses.Linear voltage regulator commonly used in the protection and current limiting to protect the cut-off in the switching regulator can be applied. However, according to the characteristics of switching regulators, the protection circuit can not directly control the output transistor switches, and overcurrent protection must be converted to pulse output commands to control the modulator to protect the transistor switch. In order to achieve over-current protection are generally required sampling resistor in series in the circuit, this will affect the efficiency of power supply, so more for low-power switching regulator of occasions. In the high-power switching power supply, by taking into account the power consumption should be avoided as far as possible access to the sampling resistor. Therefore, there will usually be converted to over-current protection, and under-voltage protection. Switching regulators input over-voltage protection, including over-voltage protection and output over-voltage protection. Switching regulator is not used in DC power supply voltage regulator and rectifier, such as battery voltage, if too high, so switching regulator is not working properly, or even damage to internal devices, therefore, it is necessary to use the input over-voltage protection circuit. Using transistors and relays protection circuit.In the circuit, when the input DC power supply voltage higher than the voltage regulator diode breakdown voltage value, the breakdown voltage regulator tube, a current flowing through resistor R, so that V turn-on transistor, relay, normally closed contact off open, cut off the input. Voltage regulator voltage regulator which controls the value of Vz = ESrmax-UBE. The polarity of input power with the input protection circuit can be combined with over-voltage protection, polarity protection constitute a differential circuit and overvoltage protection. Output over-voltage protection switching power supply is essential. In particular, for the 5V output of the switching regulator, it is a lot of load on a high level of integration of the logic device. If at work, switching regulator sudden damage to the switch transistor, the output potential may be increased immediately to the importation of non-regulated DC power supply voltage value, causing great loss instantaneous. Commonly used method is short-circuit protection thyristor. The simplest over-voltage protection circuit. When the output voltage is too high, the regulator tube breakdown triggered thyristor turn-on, the output short-circuit, resulting in over-current through the fuse or circuit protective device to cut off the input to protect the load. This circuit is equivalent to the response time of the opening time of thyristor is about 5 10s. The disadvantage is that its action is fixed voltage, temperature coefficient, and action points of instability. In addition, there is a voltage regulator control parameters of the discrete, model over-voltage start-up the same but has different values, difficult to debug. Esc a sudden increase in output voltage, transistors V1, V2 conduction, the thyristor conduction. Reference voltage Vz by type.Output voltage below the value to reflect the input DC power supply, switching regulator output load internal or unusual occurrence. Input DC power supply voltage drops below the specified value would result in switching regulator output voltage drops, the input current increases, not only endanger the switching transistor, but also endanger the input power. Therefore, in order to set up due to voltage protection. Due to simple voltage protection. When no voltage regulator input normal, ZD breakdown voltage regulator tube, transistors V conduction, the relay action, contact pull-in, power-switching regulator. When the input below the minimum allowable voltage value, the regulator tube ZD barrier, V cut-off, contact Kai-hop, switching regulator can not work. Internal switching regulator, as the control switch transistor circuit disorders or failure will decrease the output voltage; load short-circuit output voltage will also decline. Especially in the reversed-phase step-up or step-up switching reg with closely related and therefore more important. Implementation of Switching Regulators in the termination of the output voltage comparators.Normally, there is no comparator output, once the voltage drops below the allowable value in the comparator on the flip, drive alarm circuit; also fed back to the switching regulator control circuit, so that switching transistor cut-off or cut off the input power. Switching regulator and the high level of integration of light-weight small volume, with its unit volume greatly increased the power density, power supply components to its work within the requirements of the ambient temperature is also a corresponding increase. Otherwise, the circuit performance will deteriorate, premature component failure. Therefore, in high-power switching regulator should be set up over-temperature protection. Relays used to detect the temperature inside the power supply temperature, when the internally generated power supply overheating, the temperature of the relay on the action, so that whole circuit in a warning alarm, and the realization of the power supply over-temperature protection. Temperature relay can be placed in the vicinity of the switching transistor, the general high-power tube shell to allow the maximum temperature is 75 , adjust the temperature setting to 60 . When the shell after the temperature exceeds the allowable value to cut off electrical relay on the switch protection. Semiconductor switching device thermal hot thyristor, in the over-temperature protection, played an important role. It can be used as directed circuit temperature. Under the control of p-hot-gate thyristor (TT102) characteristics, by RT value to determine the temperature of the device turn-on, RT greater the temperature the lower the turn-on. When placed near the power switching transistor or power device, it will be able to play the role of temperature instructions. When the power control the temperature of the shell or the internal device temperature exceeds the allowed value, the heat conduction thyristor on, so that LED warning light. If the optocoupler with, would enable the whole circuit alarm action to protect the switching regulator. It can also be used as a power transistor as the over-temperature protection, crystal switch the base current by n-type gate control thyristor TT201 thermal bypass, cut-off switch to cut off the collector current to prevent overheating.直流开关稳压电源的保护技术直流开关稳压器中所使用的大功率开关器件价格较贵,其控制电路亦比较复杂,另外,开关稳压器的负载一般都是用大量的集成化程度很高的器件安装的电子系统。晶体管和集成器件耐受电、热冲击的能力较差。因而开关稳压器的保护应该兼顾稳压器本身和负载的安全。保护电路的种类很多,这里介绍极性保护、程序保护、过电流保护、过电压保护、欠电压保护以及过热保护等电路。通常选用几种保护方式加以组合,构成完善的保护系统。直流开关稳压器的输入一般都是未稳压直流电源。由于操作失误或者意外情况会将其极性接错,将损坏开关稳压电源。极性保护的目的,就是使开关稳压器仅当以正确的极性接上未稳压直流电源时才能工作。利用单向导通的器件可以实现电源的极性保护。最简单的极性保护电路如图1所示。由于二极管D要流过开关稳压器的输入总电流,因此这种电路应用在小功率的开关稳压器上比较合适。在较大功率的场合,则把极性保护电路作为程序保护中的一个环节,可以省去极性保护所需的大功率二极管,功耗也将减小。为了操作方便,便于识别极性正确与否,在二极管之后接指示灯。开关稳压电源的电路比较复杂,基本上可以分为小功率的控制部分和大功率的开关部分。开关晶体管则属大功率,为保护开关晶体管在开启或关断电源时的安全,必须先让调制器、放大器等小功率的控制电路工作。为此,要保证正确的开机程序。开关稳压器的输入端一般接有小电感、大电容的输入滤波器。在开机瞬间,滤波电容器会流过很大的浪涌电流,这个浪涌电流可以为正常输入电流的数倍。这样大的浪涌电流会使普通电源开关的触点或继电器的触点熔化,并使输入保险丝熔断。另外,浪涌电流也会损害电容器,使之寿命缩短,过早损坏。为此,开机时应该接入一个限流电阻,通过这个限流电阻来对电容器充电。为了不使该限流电阻消耗过多的功率,以致影响开关稳压器的正常工作,而在开机暂态过程结束后,用一个继电器自动短接它,使直流电源直接对开关稳压器供电。这种电路称之谓开关稳压器的“软启动”电路。开关稳压器的控制电路中的逻辑组件或者运算放大器需用辅助电源供电。为此,辅助电源必须先于 开关电路工作。这可用开机程序控制电路来保证。一般的开机程序是:输 入电源的极性鉴别,电压保护开机程 序电路工作辅助电源工作并通过限流电阻 R对开关稳压器的输入电容器C充电 开关稳压器的调制电路工作,短路限流电阻开关稳压器 稳定工作。在开关稳压器中,刚开机时,因为其输出电容容量大,充到额定输出电压值需要一定时间。在这段时间内,取样放大器输入低的输出电压采样,根据系统闭环调节特性将迫使开关三极管的导通时间加长,这样一来,开关三极管就会在这段期间内趋于连续导通,而容易损坏。为此,要求在开机这一段时间内,开关调制电路输出给开关三极管基极的脉宽调制驱动信号,能保证开关三极管由截止逐渐趋于正常的开关状态,故而要加设开机保护以配合软启动。当出现负载短路、过载或者控制电路失效等意外情况时,会引起流过稳压器中开关三极管的电流过大,使管子功耗增大,发热,若没有过流保护装置,大功率开关三极管就有可能损坏。故而在开关稳压器中过电流保护是常用的。最经济简便的方法是用保险丝。由于晶体管的热容量小,普通保险丝一般不能起到保护作用,常用的是快速熔断保险丝。这种方法具有保护容易的优点,但是,需要根据具体开关三极管的安全工作区要求来选择保险丝的规格。这种过流保护措施的缺点是带来经常更换保险丝的不便。在线性稳压器中常用的限流保护和电流截止保护在开关稳压器中均能应用。但是,根据开关稳压器的特点,这种保护电路的输出不能直接控制开关三极管,而必须使过电流保护的输出转换为脉冲指令,去控制调制器以保护开关三极管。为了实现过电流保护一般均需要用取样电阻串联在电路中,这会影响电源的效率,因此多用于小功率

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论