图形的折叠问题试卷.doc_第1页
图形的折叠问题试卷.doc_第2页
图形的折叠问题试卷.doc_第3页
图形的折叠问题试卷.doc_第4页
图形的折叠问题试卷.doc_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精品文档 翻折组卷一选择题(共9小题)1如图,有一矩形纸片ABCD,AB=6,AD=8,将纸片折叠使AB落在AD边上,折痕为AE,再将ABE以BE为折痕向右折叠,AE与CD交于点F,则的值是()A1BCD2如图,有一矩形纸片ABCD,AB=6,AD=8,将纸片折叠,使AB落在AD边上,折痕为AE,再将AEB以BE为折痕向右折叠,AE与DC交于点F,则的值是()A1BCD3如图,将矩形纸片ABCD沿DE折叠,使DC落在DA上,点C的落点记为F,已知AD=10 cm,BE=4cm,则CD等于()A3cmB4cmC5cmD6cm4如图,有一矩形纸片ABCD,且AB:BC=3:2,先将纸片折叠,使AD落在AB边上,折痕为AE; 再将AED以DE为折痕向右折叠,AE交BC于F那么DB:BA等于()A3:2B2:3C1:1D2:15有一张矩形纸片ABCD,AB=,AD=,将纸片折叠,使点D落在AB边上的D处,折痕为AE,再将ADE以DE为折痕向右折叠,使点A落在点A处,设AE与BC交于点F(如图),则AF的长为()ABCD6如图,在矩形纸片ABCD中,AB=10,AD=8,将纸片折叠,使AD边落在AB边上,折痕为AE,再将AED以DE为折痕向右折叠,AE与BC交于点F,则CEF的面积为()A1B2C4D87有一张矩形纸片ABCD,AB=2.5,AD=1.5,将纸片折叠,使AD边落在AB边上,折痕为AE,再将AED以DE为折痕向右折叠,AE与BC交于点F(如图),则CF的长为()A1B1CD8小明将一张矩形纸片ABCD沿CE折叠,B点恰好落在AD边上,设此点为F,若AB:BC=4:5,则cosDFC的值为()ABCD9如图,矩形纸片ABCD中,AD=10 cm,将纸片沿DE折叠,使点C落在边AD上(与点F重合),若BE=6 cm,则CD等于()A4cmB6cmC8cmD10cm二填空题(共16小题)10如图,一张宽为6cm的矩形纸片,按图示加以折叠,使得一角顶点落在AB边上,则折痕DF=_cm11如图,将一张矩形纸片ABCD沿EF折叠,使顶点C,D分别落在点C,D处,CE交AF于点G,若CEF=70,则GFD=_12如图(a),有一张矩形纸片ABCD,其中AD=6cm,以AD为直径的半圆,正好与对边BC相切,将矩形纸片ABCD沿DE折叠,使点A落在BC上,如图(b)则半圆还露在外面的部分(阴影部分)的面积为_13如图,把一张长方形纸片ABCD沿EF折叠后,点C,D分别落在点C,D的位置上,EC交AD于点G,已知EFG=50,那么BEG的度数为_14如图,P是平行四边形纸片ABCD的BC边上一点,以过点P的直线为折痕折叠纸片,使点C,D落在纸片所在平面上C,D处,折痕与AD边交于点M;再以过点P的直线为折痕折叠纸片,使点B恰好落在CP边上B处,折痕与AB边交于点N若MPC=75,则NPB=_15把矩形纸片ABCD折叠,使B、C两点恰好落在AD边上的点P处(如图),若MPN=90,PM=6cm,PN=8cm,那么矩形纸片ABCD的宽为_cm,面积为_cm216把图一的矩形纸片ABCD折叠,B、C两点恰好重合落在AD边上的点P处(如图二)已知MPN=90,PM=3,PN=4,那么矩形纸片ABCD的面积为_17把如图所示的矩形纸片ABCD折叠,B、C两点恰好落在AD边上的点P处,已知MPN=90,PM=6cm,PN=8cm,那么矩形纸片ABCD的面积为_cm218如图,将长为4cm宽为2cm的矩形纸片ABCD折叠,使点B落在CD边上的中点E处,压平后得到折痕MN,则线段AM的长度为_cm19如图,有一张矩形纸片ABCD,AB=2.5,AD=1.5,将纸片折叠,使AD边落在AB边上,折痕为AE,再将AED以DE为折痕向右折叠,AE与BC交于点F,则CF的长为_20如图,把一张矩形纸片ABCD沿EF折叠后,点CD分别落在点C、D的位置上,EC交AD于点G已知EFG=55,那么BEG=_度21如图,把一张矩形纸片ABCD沿对角线BD折叠,使C点落在C,且BC与AD交于E点,若ABE=40,则ADB=_22如图,把一张矩形纸片ABCD沿EF折叠后,点C、D分别落在C、D的位置上,EC交AD于点G,已知EFG=53,那么BEG=_23小明尝试着将矩形纸片ABCD(如图,ADCD)沿过A点的直线折叠,使得B点落在AD边上的点F处,折痕为AE(如图);再沿过D点的直线折叠,使得C点落在DA边上的点N处,E点落在AE边上的点M处,折痕为DG(如图)如果第二次折叠后,M点正好在NDG的平分线上,那么矩形ABCD长与宽的比值为_24现将矩形纸片ABCD(如图,ADCD )沿过A点的直线折叠,使得B点落在AD边上的点F处,折痕为AE(如图);再沿过D点的直线折叠,使得C点落在DA边上的点N处,E点落在AE边上的点M处,折痕为DG(如图)如果第二次折叠后,M点正好在NDG的平分线上,且,那么AD=_25如图,折叠一张矩形纸片,使它的一个顶点落在长边上,已知:=110,求=_度三解答题(共5小题)26课本中,把长与宽之比为的矩形纸片称为标准纸请思考解决下列问题:(1)将一张标准纸ABCD(ABBC)对开,如图1所示,所得的矩形纸片ABEF是标准纸请给予证明(2)在一次综合实践课上,小明尝试着将矩形纸片ABCD(ABBC)进行如下操作:第一步:沿过A点的直线折叠,使B点落在AD边上点F处,折痕为AE(如图2甲);第二步:沿过D点的直线折叠,使C点落在AD边上点N处,折痕为DG(如图2乙),此时E点恰好落在AE边上的点M处;第三步:沿直线DM折叠(如图2丙),此时点G恰好与N点重合请你探究:矩形纸片ABCD是否是一张标准纸?请说明理由(3)不难发现:将一张标准纸按如图3一次又一次对开后,所得的矩形纸片都是标准纸现有一张标准纸ABCD,AB=1,BC=,问第5次对开后所得标准纸的周长是多少?探索直接写出第2012次对开后所得标准纸的周长27把如图所示的矩形纸片ABCD折叠,B、C两点恰好落在AD边上的点P处,已知MPN=90,PM=6cm,PN=8cm,求矩形纸片ABCD的面积28如图,把一张矩形纸片ABCD沿对角线BD折叠,使C点落在C,且BC与AD交于E点,试判断重叠部分的三角形BED的形状,并证明你的结论29如图,四边形ABCD为平行四边形纸片把纸片ABCD折叠,使点B恰好落在CD边上,折痕为AF且AB=10cm、AD=8cm、DE=6cm(1)求证:平行四边形ABCD是矩形;(2)求BF的长;(3)求折痕AF长30如图,现将一张矩形ABCD的纸片一角折叠,若能使点D落在AB边上F处,折痕为CE,恰好AEF=60,延长EF交CB的延长线于点G(1)求证:CEG是等边三角形;(2)若矩形的一边AD=3,求另一边AB的长初中数学组卷参考答案与试题解析一选择题(共9小题)1(2010赤峰)如图,有一矩形纸片ABCD,AB=6,AD=8,将纸片折叠使AB落在AD边上,折痕为AE,再将ABE以BE为折痕向右折叠,AE与CD交于点F,则的值是()A1BCD考点:翻折变换(折叠问题);矩形的性质;相似三角形的判定与性质菁优网版权所有专题:压轴题分析:观察第3个图,易知ECFADF,欲求CF、CD的比值,必须先求出CE、AD的长;由折叠的性质知:AB=BE=6,那么BD=EC=2,即可得到EC、AD的长,由此得解解答:解:由题意知:AB=BE=6,BD=ADAB=2,AD=ABBD=4;CEAB,ECFADF,得=,即DF=2CF,所以CF:CD=1:3;故选C点评:此题主要考查了图形的翻折变换、矩形的性质以及相似三角形的判定和性质,难度不大2如图,有一矩形纸片ABCD,AB=6,AD=8,将纸片折叠,使AB落在AD边上,折痕为AE,再将AEB以BE为折痕向右折叠,AE与DC交于点F,则的值是()A1BCD考点:翻折变换(折叠问题)菁优网版权所有专题:应用题分析:观察第3个图,易知ECFADF,欲求CF、CD的比值,必须先求出CE、AD的长;由折叠的性质知:AB=BE=6,那么BD=EC=2,即可得到EC、AD的长,由此得解解答:解:由题意知:AB=BE=6,BD=ADAB=2,AD=ABBD=4;CEAB,ECFADF,得 =,即DF=2CF,所以CF:CD=1:3;故选C点评:本题主要考查了图形的翻折变换、矩形的性质以及相似三角形的判定和性质,难度适中3(2010白下区二模)如图,将矩形纸片ABCD沿DE折叠,使DC落在DA上,点C的落点记为F,已知AD=10 cm,BE=4cm,则CD等于()A3cmB4cmC5cmD6cm考点:翻折变换(折叠问题);矩形的性质菁优网版权所有专题:计算题分析:根据折叠的性质和正方形的判定方法,得四边形CDFE是正方形,四边形ABEF是矩形;根据矩形的性质,得AF=BE=4,则DF=6,则CD=DF=6(cm)解答:解:根据一组邻边相等的矩形是正方形,得四边形CDFE是正方形,则四边形ABEF是矩形BE=AF=4DF=ADAF=6CD=DF=6(cm)故选D点评:此题考查了折叠问题,要能够根据折叠的方法发现正方形4(2004广安)如图,有一矩形纸片ABCD,且AB:BC=3:2,先将纸片折叠,使AD落在AB边上,折痕为AE; 再将AED以DE为折痕向右折叠,AE交BC于F那么DB:BA等于()A3:2B2:3C1:1D2:1考点:翻折变换(折叠问题)菁优网版权所有专题:压轴题分析:由矩形纸片ABCD中,AB:BC=3:2,可设AB=3x,BC=2x,即可得BD=x,继而求得AB的值,则可求得答案解答:解:矩形纸片ABCD中,AB:BC=3:2,设AB=3x,BC=2x,则AD=BC=2x,BD=ABAD=3x2x=x,如图3:AB=ADBD=2xx=x,DB:BA=x:x=1:1故选C点评:此题考查了折叠的性质以及矩形的性质此题难度不大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用5有一张矩形纸片ABCD,AB=,AD=,将纸片折叠,使点D落在AB边上的D处,折痕为AE,再将ADE以DE为折痕向右折叠,使点A落在点A处,设AE与BC交于点F(如图),则AF的长为()ABCD考点:翻折变换(折叠问题)菁优网版权所有分析:利用折叠的性质,即可求得AD=AD=AD=、BD=ABAD=,AE=AE=AD=2,又由相似三角形的对应边成比例,即可求得EF:AF=EC:AB,从而求得AF的长度解答:解:根据折叠的性质知,AD=AD=AD=、CE=CDDE=,CEAB,ECFABF,CE:BA=EF:AF(相似三角形的对应边成比例);又CE=CDDE=,BA=ADCE=2,=;而AE=AE=AD=2,AF=4故选D点评:本题考查了翻折变换及正方形的性质,利用了折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等及正方形的性质,平行线的性质,有一定的难度6如图,在矩形纸片ABCD中,AB=10,AD=8,将纸片折叠,使AD边落在AB边上,折痕为AE,再将AED以DE为折痕向右折叠,AE与BC交于点F,则CEF的面积为()A1B2C4D8考点:翻折变换(折叠问题)菁优网版权所有分析:根据折叠易得BD,AB长,利用相似可得BF长,也就求得了CF的长度,CEF的面积=CFCE解答:解:由折叠的性质知,第二个图中BD=ABAD=2,第三个图中AB=ADBD=6,BCDE,BF:DE=AB:AD,BF=4,CF=BCBF=2,CEF的面积=CFCE=4故选C点评:本题利用了:折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;矩形的性质,平行线的性质,三角形的面积公式等知识点7有一张矩形纸片ABCD,AB=2.5,AD=1.5,将纸片折叠,使AD边落在AB边上,折痕为AE,再将AED以DE为折痕向右折叠,AE与BC交于点F(如图),则CF的长为()A1B1CD考点:翻折变换(折叠问题)菁优网版权所有专题:几何图形问题;压轴题;数形结合分析:利用折叠的性质,即可求得BD的长与图3中AB的长,又由相似三角形的对应边成比例,即可求得BF的长,则由CF=BCBF即可求得答案解答:解:如图2,根据题意得:BD=ABAD=2.51.5=1,如图3,AB=ADBD=1.51=0.5,BCDE,ABFADE,即,BF=0.5,CF=BCBF=1.50.5=1故选B点评:此题考查了折叠的性质与相似三角形的判定与性质题目难度不大,注意数形结合思想的应用8(2012历下区二模)小明将一张矩形纸片ABCD沿CE折叠,B点恰好落在AD边上,设此点为F,若AB:BC=4:5,则cosDFC的值为()ABCD考点:翻折变换(折叠问题);锐角三角函数的定义菁优网版权所有专题:数形结合分析:根据折叠的性质可得出CF=CB,在RTCDF中利用勾股定理可求出DF的长度,继而可求出cosDFC的值解答:解:由折叠的性质得,CB=CF,设AB=4x,则BC=5x,在RTDFC中,DF=3x,cosDFC=故选B点评:此题考查了翻折变换及勾股定理的知识,解答本题的关键是根据折叠的性质得出CF的长度,在RTCDF中求出DF的长度,难度一般9如图,矩形纸片ABCD中,AD=10 cm,将纸片沿DE折叠,使点C落在边AD上(与点F重合),若BE=6 cm,则CD等于()A4cmB6cmC8cmD10cm考点:轴对称的性质菁优网版权所有分析:根据对称的性质和AD=10,BE=6可得出CD的长度解答:解:根据轴对称的性质可得可得出CD=DF=ADAF=ADBE,CD=4cm故选A点评:本题考查轴对称的性质,关键在于根据图形判断出CD=DF二填空题(共16小题)10如图,一张宽为6cm的矩形纸片,按图示加以折叠,使得一角顶点落在AB边上,则折痕DF=8cm考点:翻折变换(折叠问题)菁优网版权所有分析:根据折叠的性质可得EDF=30,从而求出ADE=30,在RtADE中求出DE,在RtDEF中可求出DF解答:解:由折叠的性质可得:EDF=CDF=30,则ADE=903030=30,在RtADE中,AD=6cm,ADE=30,AE=ADtanADE=2cm,DE=2AE=4cm,在RtDEF中,EDF=30,DE=4cm,DF=8cm故答案为:8点评:本题考查了翻折变换的知识,注意掌握翻折前后对应边相等,对应角相等11(2012宿迁)如图,将一张矩形纸片ABCD沿EF折叠,使顶点C,D分别落在点C,D处,CE交AF于点G,若CEF=70,则GFD=40考点:平行线的性质;翻折变换(折叠问题)菁优网版权所有分析:根据两直线平行,内错角相等求出EFG,再根据平角的定义求出EFD,然后根据折叠的性质可得EFD=EFD,再根据图形,GFD=EFDEFG,代入数据计算即可得解解答:解:矩形纸片ABCD中,ADBC,CEF=70,EFG=CEF=70,EFD=18070=110,根据折叠的性质,EFD=EFD=110,GFD=EFDEFG,=11070,=40故答案为:40点评:本题考查了平行线的性质,以及折叠变换,根据两直线平行,内错角相等求出EFG是解题的关键,另外,根据折叠前后的两个角相等也很重要12(2013日照)如图(a),有一张矩形纸片ABCD,其中AD=6cm,以AD为直径的半圆,正好与对边BC相切,将矩形纸片ABCD沿DE折叠,使点A落在BC上,如图(b)则半圆还露在外面的部分(阴影部分)的面积为(3)cm2考点:切线的性质;矩形的性质;扇形面积的计算;翻折变换(折叠问题)菁优网版权所有专题:压轴题分析:如图,露在外面部分的面积可用扇形ODK与ODK的面积差来求得,在RtADC中,可根据AD即圆的直径和CD即圆的半径长,求出DAC的度数,进而得出ODH和DOK的度数,即可求得ODK和扇形ODK的面积,由此可求得阴影部分的面积解答:解:作OHDK于H,连接OK,以AD为直径的半圆,正好与对边BC相切,AD=2CD,AD=2CD,C=90,DAC=30,ODH=30,DOH=60,DOK=120,扇形ODK的面积为=3cm2,ODH=OKH=30,OD=3cm,OH=cm,DH=cm;DK=3cm,ODK的面积为cm2,半圆还露在外面的部分(阴影部分)的面积是:(3)cm2故答案为:(3)cm2点评:此题考查了折叠问题,解题时要注意找到对应的等量关系;还考查了圆的切线的性质,垂直于过切点的半径;还考查了直角三角形的性质,直角三角形中,如果有一条直角边是斜边的一半,那么这条直角边所对的角是30度13如图,把一张长方形纸片ABCD沿EF折叠后,点C,D分别落在点C,D的位置上,EC交AD于点G,已知EFG=50,那么BEG的度数为80考点:翻折变换(折叠问题)菁优网版权所有专题:探究型分析:先根据正方形的性质得出ADBC,由EFG=50可求出1的度数,再根据图形翻折变换的性质得出1=2=50,由平角的性质即可得出BEG的度数解答: 解:四边形ABCD是矩形,ADBC,EFG=50,1=EFG=50,四边形EFDC是四边形EFDC翻折而成,1=2=50,BEG=18012=1805050=80故答案为:80点评:本题考查的是图形翻折变换的性质、矩形的性质及平行线的性质,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键14如图,P是平行四边形纸片ABCD的BC边上一点,以过点P的直线为折痕折叠纸片,使点C,D落在纸片所在平面上C,D处,折痕与AD边交于点M;再以过点P的直线为折痕折叠纸片,使点B恰好落在CP边上B处,折痕与AB边交于点N若MPC=75,则NPB=15考点:翻折变换(折叠问题)菁优网版权所有分析:由折叠的性质可知:MNC=CPM=75,CPN=BPN,再利用平角为180,即可求出NPB的度数解答:解:由折叠的性质可知:MNC=CPM=75,CPN=BPN,NPM=275=150,CPB=30,由折叠的性质可知:CPN=BPN,NPB=15故答案为:15点评:本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等15把矩形纸片ABCD折叠,使B、C两点恰好落在AD边上的点P处(如图),若MPN=90,PM=6cm,PN=8cm,那么矩形纸片ABCD的宽为4.8cm,面积为115.2cm2考点:翻折变换(折叠问题)菁优网版权所有分析:根据勾股定理,得MN=10;根据直角三角形的面积公式,得AB=4.8;根据折叠,知BC=6+8+10=24,进而求得矩形的面积解答:解:过点P作PEMN,MPN=90,PM=6cm,PN=8cm,MN=10(cm),SPMN=PMPN=MNPE,PMPN=MNPE,即PE=4.8(cm),即矩形纸片ABCD的宽为:4.8cm;BC=PM+MN+PN=6+10+8=24(cm),S矩形ABCD=4.824=115.2(cm2)故答案为:4.8,115.2点评:此题综合运用了勾股定理、折叠的性质和直角三角形的斜边上的高等于两直角边的乘积除以斜边的方法此题难度适中,注意掌握折叠前后图形的对应关系,注意掌握数形结合思想的应用16(2005遂宁)把图一的矩形纸片ABCD折叠,B、C两点恰好重合落在AD边上的点P处(如图二)已知MPN=90,PM=3,PN=4,那么矩形纸片ABCD的面积为考点:翻折变换(折叠问题)菁优网版权所有专题:压轴题分析:利用折叠的性质和勾股定理可知解答:解:由勾股定理得,MN=5,设RtPMN的斜边上的高为h,由矩形的宽AB也为h,根据直角三角形的面积公式得,h=PMPNMN=,由折叠的性质知,BC=PM+MN+PN=12,矩形的面积=ABBC=点评:本题利用了:折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;勾股定理,直角三角形和矩形的面积公式求解17(2010徐汇区二模)把如图所示的矩形纸片ABCD折叠,B、C两点恰好落在AD边上的点P处,已知MPN=90,PM=6cm,PN=8cm,那么矩形纸片ABCD的面积为115.2cm2考点:翻折变换(折叠问题)菁优网版权所有分析:根据勾股定理,得MN=10;根据直角三角形的面积公式,得AB=4.8;根据折叠,知BC=6+8+10=24,进而求得矩形的面积解答:解:MPN=90,PM=6cm,PN=8cm,MN=10,BC=10+6+8=24根据直角三角形的面积公式,得AB=4.8则矩形的面积=4.824=115.2(cm2)点评:此题综合运用了勾股定理、折叠的性质和直角三角形的斜边上的高等于两直角边的乘积除以斜边的方法18如图,将长为4cm宽为2cm的矩形纸片ABCD折叠,使点B落在CD边上的中点E处,压平后得到折痕MN,则线段AM的长度为cm考点:翻折变换(折叠问题);勾股定理菁优网版权所有专题:计算题;探究型分析:连接BM,EM,BE,由折叠的性质可知,四边形ABNM和四边形FENM关于直线MN对称,由垂直平分线的性质可知BM=EM,再由点E是CD的中点,可求出DE的长,由勾股定理即可求出AM的长解答:解:如图,连接BM,EM,BE,由折叠的性质可知,四边形ABNM和四边形FENM关于直线MN对称MN垂直平分BE,BM=EM,点E是CD的中点,DE=1,在RtABM和在RtDEM中,AM2+AB2=BM2,DM2+DE2=EM2,AM2+AB2=DM2+DE2设AM=x,则DM=4x,x2+22=(4x)2+12解得,即cm故答案为:点评:本题考查的是图形折叠的性质及勾股定理,解答此类问题时,首先清楚折叠和轴对称能够提供给我们隐含的并且可利用的条件解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案19如图,有一张矩形纸片ABCD,AB=2.5,AD=1.5,将纸片折叠,使AD边落在AB边上,折痕为AE,再将AED以DE为折痕向右折叠,AE与BC交于点F,则CF的长为1考点:翻折变换(折叠问题)菁优网版权所有专题:数形结合分析:利用折叠的性质,即可求得BD的长与图3中AB的长,又由相似三角形的对应边成比例,即可求得BF的长,则由CF=BCBF即可求得答案解答:解:如图2,根据题意得:BD=ABAD=2.51.5=1,如图3,AB=ADBD=1.51=0.5,BCDE,ABFADE,=,即 =,BF=0.5,CF=BCBF=1.50.5=1故答案为:1点评:本题考查了翻折变换及正方形的性质,利用了折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等及正方形的性质,平行线的性质,有一定的难度20如图,把一张矩形纸片ABCD沿EF折叠后,点CD分别落在点C、D的位置上,EC交AD于点G已知EFG=55,那么BEG=70度考点:翻折变换(折叠问题)菁优网版权所有专题:计算题分析:由矩形的性质可知ADBC,可得CEF=EFG=55,由折叠的性质可知GEF=CEF,再由邻补角的性质求BEG解答:解:ADBC,CEF=EFG=55,由折叠的性质,得GEF=CEF=55,BEG=180GEFCEF=70故答案为:70点评:本题考查了翻折变换(折叠问题)关键是明确折叠前后,对应角相等,两直线平行,内错角相等的性质21如图,把一张矩形纸片ABCD沿对角线BD折叠,使C点落在C,且BC与AD交于E点,若ABE=40,则ADB=25考点:翻折变换(折叠问题)菁优网版权所有分析:首先根据矩形的性质可得ABC=90,ADBC,进而可以计算出EBC,再根据折叠可得EBD=CBD=EBC,然后再根据平行线的性质可以计算出ADB的度数解答:解:四边形ABCD是矩形,ABC=90,ADBC,ABE=40,EBC=9040=50,根据折叠可得EBD=CBD,CBD=25,ADBC,ADB=DBC=25,故答案为:25点评:此题主要考查了图形的折叠,关键是掌握折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等22如图,把一张矩形纸片ABCD沿EF折叠后,点C、D分别落在C、D的位置上,EC交AD于点G,已知EFG=53,那么BEG=64考点:翻折变换(折叠问题)菁优网版权所有专题:几何图形问题分析:由矩形的性质可知ADBC,可得CEF=EFG=53,由折叠的性质可知GEF=CEF,再由邻补角的性质求BEG解答:解:ADBC,CEF=EFG=53,由折叠的性质,得GEF=CEF=53,BEG=180GEFCEF=64故答案为:64点评:本题考查了翻折变换(折叠问题)关键是明确折叠前后,对应角相等,以及两直线平行,内错角相等的性质23(2010盐城)小明尝试着将矩形纸片ABCD(如图,ADCD)沿过A点的直线折叠,使得B点落在AD边上的点F处,折痕为AE(如图);再沿过D点的直线折叠,使得C点落在DA边上的点N处,E点落在AE边上的点M处,折痕为DG(如图)如果第二次折叠后,M点正好在NDG的平分线上,那么矩形ABCD长与宽的比值为:1考点:翻折变换(折叠问题)菁优网版权所有专题:压轴题分析:连DE,由翻折的性质知,四边形ABEF为正方形,EAD=45,而M点正好在NDG的平分线上,则DE平分GDC,易证RTDGERtDCE,得到DC=DG,而AGD为等腰直角三角形,得到AD=DG=CD解答:解:连DE,如图,沿过A点的直线折叠,使得B点落在AD边上的点F处,四边形ABEF为正方形,EAD=45,由第二次折叠知,M点正好在NDG的平分线上,DE平分GDC,RTDGERtDCE,DC=DG,又AGD为等腰直角三角形,AD=DG=CD,矩形ABCD长与宽的比值为 :1故答案为:1点评:本题考查了翻折的性质:翻折前后的两个图形全等也考查了正方形、角的平分线的性质以及等腰直角三角形的性质24(2011桐乡市一模)现将矩形纸片ABCD(如图,ADCD )沿过A点的直线折叠,使得B点落在AD边上的点F处,折痕为AE(如图);再沿过D点的直线折叠,使得C点落在DA边上的点N处,E点落在AE边上的点M处,折痕为DG(如图)如果第二次折叠后,M点正好在NDG的平分线上,且,那么AD=2考点:翻折变换(折叠问题)菁优网版权所有专题:计算题分析:连DE,由矩形纸片ABCD(如图,ADCD )沿过A点的直线折叠,使得B点落在AD边上的点F处,折痕为AE(如图),根据折叠的性质得到EAF=EAB=45,又沿过D点的直线折叠,使得C点落在DA边上的点N处,E点落在AE边上的点M处,折痕为DG(如图),再次根据折叠的性质得到NDG=CDG=45,MDG=EDG,DN=DC=,则AGD为等腰直角三角形,而M点正好在NDG的平分线上,得到NDM=GDM,易证RtNMDRtGMD,得到DG=DN=,根据AD=DG即可求出AD解答:解:矩形纸片ABCD(如图,ADCD )沿过A点的直线折叠,使得B点落在AD边上的点F处,折痕为AE(如图),EAF=EAB=45,又沿过D点的直线折叠,使得C点落在DA边上的点N处,E点落在AE边上的点M处,折痕为DG(如图)连DE,NDG=CDG=45,MDG=EDG,DN=DC=,AGD为等腰直角三角形,即MGD=90,又第二次折叠后,M点正好在NDG的平分线上,NDM=GDM,RtNMDRtGMD,DG=DN=,AD=DG=2故答案为2点评:本题考查了折叠的性质:折叠后两重合的图形全等也考查了三角形全等的判定与性质以及等腰直角三角形三边的关系25(2013南昌模拟)如图,折叠一张矩形纸片,使它的一个顶点落在长边上,已知:=110,求=20度考点:平行线的性质;翻折变换(折叠问题)菁优网版权所有专题:计算题分析:由折叠及矩形的性质得到AFE为直角,利用平角的定义得到一对角互余,再由AB与DC平行,利用两直线平行同旁内角互补得到一对角互补,求出AFC的度数,即可确定出的度数解答:解:由折叠的性质得:AFE=90,+AFC=90,ABCD,+AFC=180,=110,AFC=70,则=20故答案为:20点评:此题考查了平行线的性质,以及翻折变换,熟练掌握平行线的性质是解本题的关键三解答题(共5小题)26(2012衢州)课本中,把长与宽之比为的矩形纸片称为标准纸请思考解决下列问题:(1)将一张标准纸ABCD(ABBC)对开,如图1所示,所得的矩形纸片ABEF是标准纸请给予证明(2)在一次综合实践课上,小明尝试着将矩形纸片ABCD(ABBC)进行如下操作:第一步:沿过A点的直线折叠,使B点落在AD边上点F处,折痕为AE(如图2甲);第二步:沿过D点的直线折叠,使C点落在AD边上点N处,折痕为DG(如图2乙),此时E点恰好落在AE边上的点M处;第三步:沿直线DM折叠(如图2丙),此时点G恰好与N点重合请你探究:矩形纸片ABCD是否是一张标准纸?请说明理由(3)不难发现:将一张标准纸按如图3一次又一次对开后,所得的矩形纸片都是标准纸现有一张标准纸ABCD,AB=1,BC=,问第5次对开后所得标准纸的周长是多少?探索直接写出第2012次对开后所得标准纸的周长考点:翻折变换(折叠问题);全等三角形的判定与性质;勾股定理;等腰直角三角形;矩形的性质;图形的剪拼菁优网版权所有专题:几何综合题;压轴题分析:(1)根据=2=,得出矩形纸片ABEF也是标准纸;(2)利用已知得出ADG是等腰直角三角形,得出=,即可得出答案;(3)分别求出每一次对折后的周长,进而得出变化规律求出即可解答:解:(1)是标准纸,理由如下:矩形纸片ABCD是标准纸,=,由对开的含义知:AF=BC,=2=,矩形纸片ABEF也是标准纸(2)是标准纸,理由如下:设AB=CD=a,由图形折叠可知:DN=CD=DG=a,DGEM,由图形折叠可知:ABEAFE,DAE=BAD=45,ADG是等腰直角三角形,在RtADG中,AD=a,=,矩形纸片ABCD是一张标准纸;(3)对开次数:第一次,周长为:2(1+)=2+,第二次,周长为:2(+)=1+,第三次,周长为:2(+)=1+,第四次,周长为:2(+)=,第五次,周长为:2(+)=,第六次,周长为:2(+)=,第5次对开后所得标准纸的周长是:,第2012次对开后所得标准纸的周长为:点评:此题主要考查了翻折变换性质以及规律性问题应用,根据已知得出对开后所得标准纸的周长变化规律是解题关键27把如图所示的矩形纸片ABCD折叠,B、C两点恰好落在AD边上的点P处,已知MPN=90,PM=6cm,PN=8cm,求矩形纸片ABCD的面积考点:翻折变换(折叠问题)菁优网版权所有分析:先在RtMPN中,利用勾股定理,求得MN=10,再根据折叠的性质,得出BC=6+8+10=24,然后由直角三角形的面积公式,得到AB=4.8,进而求得矩形的面积解答:解:MPN=90,PM=6cm,PN=8cm,MN=10,BC=10+6+8=24根据直角三角形的面积公式,得AB=4.8,矩形的面积=4.824=115.2(cm2)故矩形纸片ABCD的面积为115.2cm2点评:此题综合运用了勾股定理、折叠的性质和直角三角形的斜边上的高等于两直角边的乘积除以斜边的方法,本题难度适中28如图,把一张矩形纸片ABCD沿对角线BD折叠,使C点落在C,且BC与AD交于E点,试判断重叠部分的三角形BED的形状,并证明你的结论考点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论