高三数学集体备课记录《函数的单调性与最值》_第1页
高三数学集体备课记录《函数的单调性与最值》_第2页
高三数学集体备课记录《函数的单调性与最值》_第3页
高三数学集体备课记录《函数的单调性与最值》_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

.高三数学(理)集体备课记录课题:函数的单调性与最值时间地点2016年9月12日主持人赵纯金参与者张泽成、黄翼备课设想教材分析本节课是在学生学习了函数概念的基础上所研究的函数的一个重要性质。在研究函数的值域、定义域、最值等性质中有重要应用;在解不等式、证明不等式、数列的性质等数学的其他内容的研究中也有重要的应用。可见,不论在函数内部还是在外部,函数的单调性都有重要应用,因而在数学中具有核心地位。此外函数单调性的研究方法也具有典型意义,体现了对函数研究的一般方法。这就是,加强“数”与“形”的结合,由直观到抽象;由特殊到一般。首先借助对函数图像的观察、分析、归纳,发现函数的增、减变化的直观特征,进一步量化,发现增、减变化数字特征,从而进一步用数学符号刻画。考情分析1.函数单调性的判断和应用及函数最值、奇偶性、周期性的应用是高考的热点,题型既有选择题、填空题,也有解答题,与函数概念、图像、性质综合在考查;2.2017年仍将综合考查函数性质,还常常与向量、不等式、三角函数、导数等知识结合,进行综合考查。复习目标知识与能力目标:1.使学生理解函数单调性的概念,并能判断一些简单函数在给定区间上的单调性;2.启发学生发现问题和提出问题,培养学生分析问题、认识问题和解决问题的能力;3.进一步培养学生的逻辑推理能力和创新意识。情感目标:通过对函数单调性与最值问题的探究,体会数学的奥妙,激发学生数学学习兴趣,体会数学的应用价值,在教学中激发学生的探索精神。思想方法:数形结合、分类讨论的基本数学思想教学方法探究式教学与讲练结合。重点难点1.重点是:增减函数和最值的形式化定义;2.难点是:如何从图像升降的直观认识过渡到函数增减的数学符号语言表述;用定义证明函数的单调性,从而求的函数在区间上的最值。教学策略1.重视多种教法的有效整合;2.重视提出问题与解决问题策略指导;3.重视加强对交汇知识密切联系的发掘;4.知识加强数学实践能力的培养;5.注意避免繁琐的形式化训练;6.教学过程体现“实践认识实践”。实施教学过程一、 考点知识自主梳理1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2当x1x2时,都有f(x1)f(x2),那么就说函数f(x)在区间D上是增函数当x1f(x2),那么就说函数f(x)在区间D上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数yf(x)在区间D上是增函数或减函数,那么就说函数yf(x)在这一区间具有(严格的)单调性,区间D叫做yf(x)的单调区间2函数的最值前提设函数yf(x)的定义域为I,如果存在实数M满足条件(1)对于任意的xI,都有f(x)M;(2)存在x0I,使得f(x0)M(3)对于任意的xI,都有f(x)M;(4)存在x0I,使得f(x0)M结论M为最大值M为最小值思考辨析判断下面结论是否正确(请在括号中打“”或“”)(1)在增函数与减函数定义中,可把“任意两个自变量”改为“存在两个自变量”()(2)对于函数f(x),xD,若x1,x2D且(x1x2)f(x1)f(x2)0,则函数f(x)在D上是增函数()(3)函数yf(x)在1,)上是增函数,则函数的单调递增区间是1,)()(4)函数y的单调递减区间是(,0)(0,)()(5)所有的单调函数都有最值()(6)对于函数yf(x),若f(1)0),则f(x)在(1,1)上的单调性如何?思维升华确定函数单调性的方法:(1)定义法和导数法,证明函数单调性只能用定义法和导数法;(2)复合函数法,复合函数单调性的规律是“同增异减”;(3)图象法,图象不连续的单调区间不能用“”连接题型二函数的最值例3已知函数f(x),x1,),a(,1(1)当a时,求函数f(x)的最小值;(2)若对任意x1,),f(x)0恒成立,试求实数a的取值范围思维升华求函数最值的常用方法:(1)单调性法:先确定函数的单调性,再由单调性求最值;(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值;(3)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值题型三函数单调性的应用命题点1比较大小例4已知函数f(x)log2x,若x1(1,2),x2(2,),则()Af(x1)0,f(x2)0 Bf(x1)0 Cf(x1)0,f(x2)0,f(x2)0命题点2解不等式例5已知函数f(x)为R上的减函数,则满足f Ba Ca0成立,那么a的取值范围是_思维升华函数单调性应用问题的常见类型及解题策略(1)比较大小比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决(2)解不等式在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f”符号脱掉,使其转化为具体的不等式求解此时应特别注意函数的定义域(3)利用单调性求参数视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数;需注意若函数在区间a,b上是单调的,则该函数在此区间的任意子集上也是单调的;分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值三、课时小结答题模板1确定抽象函数单调性解函数不等式典例(12分)函数f(x)对任意的m、nR,都有f(mn)f(m)f(n)1,并且x0时,恒有f(x)1.(1)求证:f(x)在R上是增函数;(2)若f(3)4,解不等式f(a2a5)2.思维点拨(1)对于抽象函数的单调性的证明,只能用定义应该构造出f(x2)f(x1)并与0比较大小(2)将函数不等式中的抽象函数符号“f”运用单调性“去掉”是本题的切入点要构造出f(M)f(N)的形式解函数不等式问题的一般步骤:第一步:(定性)确定函数f(x)在给定区间上的单调性;第二步:(转化)将函数不等式转化为f(M)0时,f(x)1,构造不出f(x2)f(x1)f(x2x1)1的形式,便找不到问题的突破口第二个关键应该是将不等式化为f(M)f(N)的形式解决此类问题的易错点:忽视了M、N的取值范围,即忽视了f(x)所在的单调区间的约束方法与技巧1利用定义证明或判断函数单调性的步骤(1)取值;(2)作差;(3)定量;(4)判断2确定函数单调性有四种常用方法:定义法、导数法、复合函数法、图象

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论