2015518172445CWPRP_第1页
2015518172445CWPRP_第2页
2015518172445CWPRP_第3页
2015518172445CWPRP_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2015高考数学易错点查漏补缺(一)一、集合与简易逻辑易错点1 对集合表示方法理解存在偏差【问题】1: 已知,求。错解:剖析:概念模糊,未能真正理解集合的本质。正确结果:【问题】2: 已知,求。错解: 正确答案:剖析:审题不慎,忽视代表元素,误认为为点集。反思:对集合表示法部分学生只从形式上“掌握”,对其本质的理解存在误区,常见的错误是不理解集合的表示法,忽视集合的代表元素。易错点2 在解含参数集合问题时忽视空集【问题】: 已知,且,求 的取值范围。错解:-1,0)剖析:忽视的情况。正确答案:-1,2反思:由于空集是一个特殊的集合,它是任何集合的子集,因此对于集合就有可能忽视了,导致解题结果错误。尤其是在解含参数的集合问题时,更应注意到当参数在某个范围内取值时,所给的集合可能是空集的情况。考生由于思维定式的原因,往往会在解题中遗忘了这个集合,导致答案错误或答案不全面。易错点3 在解含参数问题时忽视元素的互异性【问题】: 已知1, ,求实数的值。错解: 剖析:忽视元素的互异性,其实当时,=1;当时, =1;均不符合题意。正确答案:反思:集合中的元素具有确定性、互异性、无序性,集合元素的三性中的互异性对解题的影响最大,特别是含参数的集合,实际上就隐含着对字母参数的一些要求。解题时可先求出字母参数的值,再代入验证。易错点4 命题的否定与否命题关系不明【问题】: 写出“若,则”的否命题。错解一:否命题为“若,则”剖析:概念模糊,弄错两类命题的关系。错解二:否命题为“若,则”剖析:知识不完整,的否定形式应为。正确答案:若,则反思:命题的否定是命题的非命题,也就是“保持原命题的条件不变,否定原命题的结论作为结论”所得的命题,但否命题是“否定原命题的条件作为条件,否定原命题的结论作为结论”所得的命题。对此。考生可能会犯两类错误概念不清,不会对原命题的条件和结论作出否定;审题不够细心。易错点5 充分必要条件颠倒出错【问题】:已知是实数,则“且”是“且”的 A充分而不必要条件 B必要而不充分条件 C充分必要条件 D既不充分也不必要条件 错解:选B剖析:识记不好,不能真正理解充要条件概念,未能掌握判断充要条件的方法。正确答案:C反思:对于两个条件,如果,则是的充分条件,是的必要条件,如果,则是的充要条件。判断充要条件常用的方法有定义法;集合法;等价法。解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时,一定要分清条件和结论,根据充要条件的定义,选择恰当的方法作出准确的判断,不充分不必要常借助反例说明。易错点6 对逻辑联结词及其真值表理解不准【问题】: 命题p:若a、bR,则是的充分而不必要条件;命题q:函数y=的定义域是(,13,+,则A“”为假 B“”为真 C D 错解一:选或 剖析:对真值表记忆不准,本题中,因此“”为真,而“”为假。错法二:选 剖析:基础不牢,在判断命题真假时出错。正确答案:D反思:含逻辑联结词“或”、“且”、“非”的命题称为复合命题。在判断复合命题真假时,常常因为对概念理解不准确或真值表记不清而出现错误。为此准确理解概念、巧记真值表是解题的关键。这里介绍一种快速记忆真值表的方法:“”有真则真;“”有假则假;“”真假相反。易错点7 否定全称、特称命题出错【问题】写出下列命题的否定: :对任意的正整数x, ; q:存在一个三角形,它的内角和大于; r:三角形只有一个外接圆。错解:对任意的正整数x, ;:所有的三角形的内角和小于;存在一个三角形有且只有一个外接圆。剖析:知识欠缺,基础不牢导致出错。正确答案:存在正整数x, 使;:所有的三角形的内角和都不大于;存在一个三角形至少有两个外接圆。反思:全称命题,它的否定,特称命题,它的否定。一般来说,全称命题的否定是特称命题,特称命题的否定是全称命题。切记对全称、特称命题的否定,不仅要否定结论,而且还要对量词“”进行否定。另外,对一些省略了量词的简化形式,应先将命题写成完整形式,再依据法则来写出其否定形式。二、函数与导数易错点8 求函数定义域时条件考虑不充分【问题】: 求函数y=+的定义域。错解:-3,1 剖析:基础不牢,忽视分母不为零;误以为=1对任意实数成立。正确答案:反思:函数定义域是使函数有意义的自变量的取值范围,因此求定义域时就要根据函数解析式把各种情况下的自变量的限制条件找出来,列成不等式组,不等式组的解集就是该函数定义域。在求函数的定义域时应注意以下几点分式的分母不为零;偶次根式被开方式非负;对数的真数大于零;零的零次幂没有意义;函数的定义域是非空的数集。易错点9 求复合函数定义域时忽视“内层函数的值域是外层函数的定义域”【问题】已知函数求函数的值域。错解:设,。剖析:知识欠缺,求函数定义域时,应考虑.正确答案:反思:在复合函数中,外层函数的定义域是内层函数的值域,求复合函数定义域类型为:若已知的定义域为,其复合函数的定义域可由不等式解出即可;若已知的定义域为 ,求的定义域,相当于xa,b时,求的值域(即 的定义域)。易错点10 判断函数奇偶性时忽视定义域【问题】1: 判断函数的奇偶性。错解:原函数即,为奇函数 剖析:只关注解析式化简,忽略定义域。正确答案:非奇非偶函数。【问题】2: 判断函数的奇偶性。错解:,为偶函数 剖析:不求函数定义域只看表面解析式,只能得到偶函数这一结论,导致错误。正确答案:既奇且偶函数。反思:函数具有奇偶性的必要条件是其定义域关于原点对称。如果不具备这个条件,一定是非奇非偶函数。在定义域

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论