




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精品文档鸡兔同笼问题“鸡兔同笼”问题小朋友们听说过吗?这是一类著名的数学问题。比如:“鸡兔同笼,共有45个头,146只脚。笼中各有多少只鸡兔?”鸡兔同笼问题的特点是:题目中有两个或两个以上的未知数,要求根据总数量,求出各未知数的单量。解题时,首先要根据题目中所给出的两个未知数的关系,用一个未知数代替另一个未知数,从而将两个未知数装化为一个未知数,从而解出答案。鸡兔问题公式】 五种基本公式(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡的脚数总头数)(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。或者是(每只兔脚数总头数-总脚数)(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”解一 (100-236)(4-2)=14(只)兔;36-14=22(只)鸡。解二 (436-100)(4-2)=22(只)鸡;36-22=14(只)兔。(答 略)(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数总头数-脚数之差)(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数总头数+鸡兔脚数之差)(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。(例略)(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。(每只鸡的脚数总头数+鸡兔脚数之差)(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。或(每只兔的脚数总头数-鸡兔脚数之差)(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数。(例略)(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数产品总数-实得总分数)(每只合格品得分数+每只不合格品扣分数)=不合格品数。或者是总产品数-(每只不合格品扣分数总产品数+实得总分数)(每只合格品得分数+每只不合格品扣分数)=不合格品数。例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?”解一 (41000-3525)(4+15)=47519=25(个)解二 1000-(151000+3525)(4+15)1000-1852519=1000-975=25(个)(答略)(“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费元,破损者不仅不给运费,还需要赔成本元。它的解法显然可套用上述公式。)(5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式:(两次总脚数之和)(每只鸡兔脚数和)+(两次总脚数之差)(每只鸡兔脚数之差)2=鸡数;(两次总脚数之和)(每只鸡兔脚数之和)-(两次总脚数之差)(每只鸡兔脚数之差)2=兔数。例如,“有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只。鸡兔各是多少只?”解 (52+44)(4+2)+(52-44)(4-2)2=202=10(只)鸡(52+44)(4+2)-(52-44)(4-2)2=122=6(只)兔(答略)典型例题例【1】 鸡兔同笼,共有45个头,146只脚。笼中鸡兔各有多少只?分析 题目中给出了鸡、兔共45只。如果假设这45只全都是兔子,那么就应该有180只脚。而题目只告诉我们有146只脚,我们算的180只脚和实际相比多算了34只脚。为什么呢?因为一只鸡是两只脚,而我们把它当成4只脚算了。如果用一只鸡来置换一只兔,就要减少2之脚,那么,34只脚里包含多少个2只脚,也就是我们把多少只鸡当成了兔子,显然34217(只)。所以鸡有17只,兔子有28只。当然,我们也可以把45只都假设成是鸡,把以上问题反过来考虑。解法一 假设全是兔子。(445146)(42)17(只)鸡451728(只)兔解法二 假设全是鸡。(146245)(42)28(只)兔452817(只)鸡答:鸡有17只,兔子有28只。例【2】 盒子里有大、小两种钢珠共30个,共重266克,已知大钢珠每个11克,小钢珠每个7克。盒中大钢珠、小钢珠各有多少个?分析 假设全部都是大钢珠,则共重:1130330(克);比原来的克数重:33026664(克);小钢珠的个数是:64(117)16(个)大钢珠的个数是:301614(个)同样,也可以假设全部都是小钢珠。算法一样。解法一 假设全是大钢珠。(3011266)(117)16(个)小钢珠301614(个)大钢珠解法二 假设全是小钢珠。 (266307)(117)14(个)大钢珠301416(个)小钢珠例【3】 一个集邮爱好者买了10分和20分的邮票共100张,总值18元8角。这个集邮爱好者买这两种邮票各多少张?分析 先假定买来的100张邮票全部是20分一张的,那么总值应是2000分,比原来的总值多120分。而多的120分,是把10分一张的看作是20分的一张的,每张多算10分。因此可以先求出10分一张的邮票有多少张。解 10分一张的邮票的张数有:(20001880)(2010)12(张)20分一张的邮票张数有:1001288(张)答:10分一张的邮票有12张,20分一张的邮票有88张。例【4】 学校买来3个排球和2个足球,共花去111元。每个足球比每个排球贵3元。每个排球和每个足球各多少元?分析 根据“每个足球比每个排球贵3元”可知,当把买2个足球换成买2个排球时,买球共花的钱就会比原来少6元,现在买的是(32)个排球,因此,可以求出每个排球的价钱。解 每个排球的价钱:(11132)(32)21(元)每个足球的价钱:21324(元)答:每个排球的价钱是21元,每个足球的价钱是24元。同样,这道题也可以将3个排球换成3个足球来考虑。例【5】 买2支钢笔的价钱等于买8支圆珠笔的价钱。如果买3支钢笔和5支圆珠笔共花17元,问两种笔每支各多少元?分析 根据“买2支钢笔的价钱等于买8支圆珠笔的价钱”,可知“买1支钢笔的价钱等于买4支圆珠笔的价钱”,买3支钢笔的价钱可以买(43)支圆珠笔。这样,我们就可以将买钢笔的支数转换为买圆珠笔的支数了。从而顺利地求出每支圆珠笔的价钱。解 一支圆珠笔的价钱:5(82)317(支)17171(元)一支钢笔的价钱:1824(元)答:一支钢笔4元,一支圆珠笔1元。 鸡兔同笼类练习题一1. 有鸡兔共20只,脚44只,鸡兔各几只?2. 龟鹤共有100个头,350只脚.龟、鹤各多少只?3. 鸡兔共13只,共有脚30只,鸡兔各有多少只?4. 鸡兔同笼,共有头30个,足86只,求鸡兔各有多少只?5. 鸡兔共笼,兔比鸡多5只,共有脚46只,鸡、兔各多少只? 6. 鸡兔共笼,兔比鸡多2只,共有脚56只,鸡、兔各多少只? 7. 鸡兔共笼,兔比鸡多4只,共有脚68只,鸡、兔各多少只?8. 鸡兔共笼,兔比鸡多4只,共有脚76只,鸡、兔各多少只?9. 有鸡、兔共8只,它们共有脚26只,鸡、兔各是多少只?10. 鸡兔同笼,共有头100个,足316只,求鸡兔各有多少只?11. 鸡兔同笼,头共20个,足共62只,求鸡与兔各有多少只?12. 鸡兔同笼,头共35个,脚共94只,求鸡与兔各有多少个头?13. 鸡兔共200只,鸡的脚比兔的脚少56只,则鸡有几只,兔有几只?14. 鸡、兔共笼,鸡比兔多26只,足数共274只,问鸡、兔各几只?15. 有一群鸡和兔,腿的总数比头的总数的2倍多18只,兔有几只?16. 鸡、兔共笼,鸡比兔多26只,足数共274只,问鸡、兔各几只?17. 张大妈养鸡兔共200只,鸡兔足数共560只,求鸡兔各有多少只?18. 鸡、兔共100只,鸡的脚比兔的脚少70只,问鸡、兔各有多少只?19、 鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只? 鸡兔同笼类练习题二1. 红英小学三年级有3个班共135人,二班比一班多5人,三班比二班少7人,三个班各有多少人?2. 学校买回4个篮球和5个排球一共用185元,一个篮球比一个排球贵8元,篮球的单价是多少元?3. 有钢笔和铅笔共27盒,共计300支.钢笔每盒10支,铅笔每盒12支,则钢笔有多少盒?铅笔有多少盒?4. 大油瓶一瓶装4千克,小油瓶2瓶装1千克.现有100千克油装了共60个瓶子.问大、小油瓶各多少个?5. 100个馒头100个和尚吃,大和尚每人吃4个,小和尚4人吃一个,则大和尚有多少个?小和尚有多少个?6. 100个馒头100个和尚吃,大和尚每人吃3个,小和尚3人吃一个,则大和尚有多少个?小和尚有多少个?7. 全班46人去划船,共乘12只船,其中大船每只坐5人,小船每只坐3人,求大船和小船各有多少只?8. 有两桶油共重86千克,假如从甲桶油倒入乙桶4千克,则两桶油的重量相同这两桶油各有多少千克?9. 星星幼儿园买来14套小桌椅,共花1162元。已知每张桌子比每把椅子贵7元。桌子和椅子每张多少钱?10. 停车场上停了35辆小轿车和两轮摩托车,地面上数一上共有10个轮子,请问小轿车和摩托车各有多少辆?11. 大油瓶一瓶装4千克,小油瓶2瓶装1千克现有100千克油装了共60个瓶子问大、小油瓶各多少个?12. 一次植树活动,规定大树每人种2棵,小树每人种4棵,全班50
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年航空器材维修工程师职业技能认证试题及答案
- 2025年航空企业机械师安全生产知识考试试题及答案
- 2025年主厂房检修班技能培训试卷及答案
- 3.1 DNA是主要遗传物质教学设计-2023-2024学年高一下学期生物人教版必修二
- 高速公路沥青施工合同(3篇)
- 安徽导游证试题及答案
- 爱尔三基考试题库及答案
- oppo会计笔试题目及答案
- 互联网房地产投资合作框架协议范本
- 2025国税公务员面试题及答案
- 江苏省制造业领域人工智能技术应用场景参考指引2025年版
- 9.18事变防空演练方案3篇2025
- 急性心肌梗死病人护理
- 2025年充换电站项目建议书
- 文旅公司考试试题及答案
- 成都银行招聘考试真题2024
- 专利代理培训课件
- 人教版(PEP)(2024)英语四年级上册2025-2026学年教学计划
- 浙江省名校协作体2025-2026学年高二上学期开学联考英语试卷(PDF版含答案含听力原文无音频)
- GJB3243A-2021电子元器件表面安装要求
- 2025年全国翻译专业资格(水平)考试土耳其语三级笔译试卷
评论
0/150
提交评论