




已阅读5页,还剩90页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
空间几何体,空间几何体的结构,柱、锥、台、球的结构特征,简单几何体的结构特征,三视图,柱、锥、台、球的三视图,简单几何体的三视图,直观图,斜二测画法,平面图形,空间几何体,中心投影,柱、锥、台、球的表面积与体积,平行投影,画图,识图,柱锥台球,圆锥,圆台,多面体,旋转体,圆柱,棱柱,棱锥,棱台,概念,结构特征,侧面积,体积,球,概念,性质,侧面积,体积,由上述几何体组合在一起形成的几何体称为简单组合体,1、按侧棱是否和底面垂直分类:,棱柱,斜棱柱,直棱柱,正棱柱,其它直棱柱,2、按底面多边形边数分类:,棱柱的分类,三棱柱、四棱柱、五棱柱、,四棱柱,平行六面体,长方体,直平行六面体,正四棱柱,正方体,底面变为平行四边形,侧棱与底面垂直,底面是矩形,底面为正方形,侧棱与底面边长相等,几种六面体的关系:,【知识梳理】,棱锥,1、定义:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫棱锥。如果一个棱锥的底面是正多边形,并且顶点在底面的射影是底面中心,这样的棱锥叫做正棱锥。,2、性质、正棱锥的性质(1)各侧棱相等,各侧面都是全等的等腰三角形。(2)棱锥的高、斜高和斜高在底面上的射影组成一个直角三角形;棱锥的高、侧棱和侧棱在底面上的射影也组成一个直角三角形。,正棱锥性质2,棱锥的高、斜高和斜高在底面的射影组成一个直角三角形。棱锥的高、侧棱和侧棱在底面的射影组成一个直角三角形,P,A,RtPEO,RtPOB,RtPEB,RtBEO,棱台由棱锥截得而成,所以在棱台中也有类似的直角梯形。,1.定义:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分是棱台.,2.分类:由三棱锥,四棱锥,五棱锥,截得的棱台,分别叫做三棱台,四棱台,五棱台,,3.表示:棱台ABCD-A1B1C1D1,棱台的结构特征,棱台的结构特征,两个互相平行的面叫做底面,其中截面叫做棱台的上底面,棱锥底面叫做棱台的下底面,其余各面叫做棱台的侧面,棱柱,侧棱垂直于底面,直棱柱,底面是正多边形,正棱柱,棱锥,底面为正多边形,顶点在底面的射影为正多边形的中心,正棱锥,正棱台由正棱锥截的的棱台,处理台体的思想方法是还台于锥。,以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫做圆锥。,圆锥的结构特征,(3)常见旋转体的三视图球的三视图都是半径相等的圆.水平放置的圆锥的正视图和侧视图均为全等的等腰三角形.水平放置的圆台的正视图和侧视图均为全等的等腰梯形.水平放置的圆柱的正视图和侧视图均为全等的矩形.,(3)斜二测画法中的“三变”与“三不变”,对应演练,2.给出下列命题:棱柱的侧棱都相等,侧面都是全等的平行四边形;在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;存在每个面都是直角三角形的四面体;棱台的侧棱延长后交于一点.其中正确命题的序号是_.,答案,解析,不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一定全等;正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;正确,如图,正方体ABCDA1B1C1D1中的三棱锥C1ABC,四个面都是直角三角形;正确,由棱台的概念可知.,3.给出下列四个命题:有两个侧面是矩形的图形是直棱柱;侧面都是等腰三角形的棱锥是正棱锥;侧面都是矩形的直四棱柱是长方体;底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱.其中不正确的命题为_.,答案,解析,对应演练,4.一个三棱锥的正视图和俯视图如图所示,则该棱锥的侧视图可能为,答案,解析,5.如图是一几何体的直观图、正视图和俯视图,则该几何体的侧视图为,答案,解析,对应演练,2.如图,矩形OABC是水平放置的一个平面图形的直观图,其中OA6cm,OC2cm,则原图形是,A.正方形B.矩形C.菱形D.一般的平行四边形,2.如图,矩形OABC是水平放置的一个平面图形的直观图,其中OA6cm,OC2cm,则原图形是,A.正方形B.矩形C.菱形D.一般的平行四边形,答案,解析,3.如图所示,ABC是ABC的直观图,且ABC是边长为a的正三角形,则ABC的面积为_.,答案,解析,建立如图所示的坐标系xOy,ABC的顶点C在y轴上,边AB在x轴上,把y轴绕原点逆时针旋转45得y轴,在y轴上取点C使OC2OC,A,B点即为A,B点,长度不变.已知ABACa,在OAC中,,对应演练,2.如图所示的是一个几何体的三视图,则该几何体的表面积为_.,答案,解析,26,3.一个多面体的三视图如图所示,则该多面体的表面积为,答案,解析,对应演练,3.如图,在ABC中,AB8,BC10,AC6,DB平面ABC,且AEFCBD,BD3,FC4,AE5,则此几何体的体积为_.,解答本题时可用“补形法”完成.“补形法”是立体几何中一种常见的重要方法,在解题时,把几何体通过“补形”补成一个完整的几何体或置于一个更熟悉的几何体中,巧妙地破解空间几何体的体积等问题,常见的补形法有对称补形、联系补形与还原补形,对于还原补形,主要涉及台体中“还台为锥”,将不规则的几何体补成规则的几何体等.,96,答案,解析,思想方法指导,用“补形法”把原几何体补成一个直三棱柱,使AABBCC8,,5.如图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且ADE,BCF均为正三角形,EFAB,EF2,则该多面体的体积为,答案,解析,6.如图,ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,DC平面ABC,AB2,EB,设ACx,V(x)表示三棱锥BACE的体积,求函数V(x)的解析式及最大值.,DC平面ABC,BE平面ABC.,在RtABE中,AB2,EB,在RtABC中,ACx,BC(0x2),,SABCACBCx,,7.如图所示,ABCD是边长为3的正面ABCD的距离为2,则该多面体的体积为(),【思路点拨】,或依据提供选项,利用所求体积大于VEABCD,可得答案,【解析】法一:如图所示,连结EB、EC.四棱锥E-ABCD的体积,法二:如图所示,设G、H分别为AB、CD的中点,连结EG、EH、GH,则EGFB,EHFC,GHBC,得三棱柱EGH-FBC.,法三:可利用排除法来解,几个与球有关的切、接常用结论(1)正方体的棱长为a,球的半径为R,若球为正方体的外接球,则2Ra;若球为正方体的内切球,则2Ra;若球与正方体的各棱相切,则2Ra
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 音乐课中国古典课件
- 急救方法培训课件
- 油田开发项目质量管理方案
- 高效节能电机项目社会稳定风险评估报告(范文参考)
- 2025年砂洗机项目发展计划
- 2025年碾米机械项目合作计划书
- 2025年家用制冷电器具项目发展计划
- 2025年政府引导基金项目合作计划书
- 维修表扬信范文
- 2025年旅游景区开发建设项目社会稳定风险评估与管理规范报告
- 《无人机介绍》课件
- 2025-2030中国硼酸行业市场发展现状及竞争格局与投资研究报告
- 学校中层干部选拔聘用实施方案中层干部选聘实施方案2
- 生物必修1教师用书
- 园艺植物育种学知到课后答案智慧树章节测试答案2025年春浙江大学
- 《电力机车制动系统检修与维护》课件 项目二任务四检修中继阀
- GB/T 15683-2025粮油检验大米直链淀粉含量的测定
- 2025吉林省安全员C证考试(专职安全员)题库及答案
- 电钻清洗消毒流程
- 装修贷款申请书
- 造林安全文明施工方案
评论
0/150
提交评论