计量经济学计量经济学第五章异方差性作业.doc_第1页
计量经济学计量经济学第五章异方差性作业.doc_第2页
计量经济学计量经济学第五章异方差性作业.doc_第3页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

本文档系作者精心整理编辑,实用价值高。作业 计量经济学第五章异方差性 5.1手写板已交5.2解(1)由题中数据由Eviews软件进行估计结果如下 Dependent Variable: YMethod: Least SquaresDate: 01/01/04 Time: 00:54Sample: 1901 1960Included observations: 60VariableCoefficientStd. Errort-StatisticProb. C9.3475223.6384372.5691040.0128X0.6370690.01990332.008810.0000R-squared0.946423 Mean dependent var119.6667Adjusted R-squared0.945500 S.D. dependent var38.68984S.E. of regression9.032255 Akaike info criterion7.272246Sum squared resid4731.735 Schwarz criterion7.342058Log likelihood-216.1674 F-statistic1024.564Durbin-Watson stat1.790431 Prob(F-statistic)0.000000样本回归模型为 (3.638437) (0.019903) t= (2.569104) (32.00881) F=1024.564(2) 解Goldfiele-Quandt法检验:1) 对变量取值排序2) 构造子样本区间,建立回归模型。其中n=60,删除1/4的观测值即大约14个观测值,余下部分评分得两个样本区间:123和3860,他们的样本个数均是8个,即在Sample菜单里,将区间定义为123,然后用OLS方法求得如下估计结果 Dependent Variable: YMethod: Least SquaresDate: 01/01/04 Time: 01:27Sample: 1901 1923Included observations: 23VariableCoefficientStd. Errort-StatisticProb. C9.5122386.7353501.4122860.1725X0.6362350.05995910.611110.0000R-squared0.842809 Mean dependent var79.91304Adjusted R-squared0.835324 S.D. dependent var13.71434S.E. of regression5.565315 Akaike info criterion6.353926Sum squared resid650.4275 Schwarz criterion6.452664Log likelihood-71.07014 F-statistic112.5958Durbin-Watson stat1.212347 Prob(F-statistic)0.000000在Sample菜单里,将区间定义为3860,再用OLS方法求得如下结果 Dependent Variable: YMethod: Least SquaresDate: 01/01/04 Time: 01:31Sample: 1938 1960Included observations: 23VariableCoefficientStd. Errort-StatisticProb. C-46.6786624.86518-1.8772700.0744X0.8697810.1046778.3091810.0000R-squared0.766777 Mean dependent var159.0435Adjusted R-squared0.755671 S.D. dependent var22.33318S.E. of regression11.03921 Akaike info criterion7.723726Sum squared resid2559.148 Schwarz criterion7.822464Log likelihood-86.82284 F-statistic69.04250Durbin-Watson stat0.692905 Prob(F-statistic)0.0000003)求F统计量由表中数据可知残差平方和 根据Golefield-Quanadt检验,F统计量 在,所以拒绝原假设,表明模型确实存在异方差。White法检验模型根据模型White检验结果如下 White Heteroskedasticity Test:F-statistic6.301373 Probability0.003370Obs*R-squared10.86401 Probability0.004374Test Equation:Dependent Variable: RESID2Method: Least SquaresDate: 01/01/04 Time: 01:42Sample: 1901 1960Included observations: 60VariableCoefficientStd. Errort-StatisticProb. C-10.03614131.1424-0.0765290.9393X0.1659771.6198560.1024640.9187X20.0018000.0045870.3924690.6962R-squared0.181067 Mean dependent var78.86225Adjusted R-squared0.152332 S.D. dependent var111.1375S.E. of regression102.3231 Akaike info criterion12.14285Sum squared resid596790.5 Schwarz criterion12.24757Log likelihood-361.2856 F-statistic6.301373Durbin-Watson stat0.937366 Prob(F-statistic)0.003370从表中可知,由White检验知,在,所以拒绝原假设,表明模型存在异方差。(3)修正异方差选用权数,运用加权最小二乘法(WLS)进行估计结果如下选取权数w1的结果Dependent Variable: YMethod: Least SquaresDate: 01/01/04 Time: 01:59Sample: 1901 1960Included observations: 60Weighting series: W1VariableCoefficientStd. Errort-StatisticProb. C10.370512.6297163.9435870.0002X0.6309500.01853234.046670.0000Weighted StatisticsR-squared0.211441 Mean dependent var106.2101Adjusted R-squared0.197845 S.D. dependent var8.685376S.E. of regression7.778892 Akaike info criterion6.973470Sum squared resid3509.647 Schwarz criterion7.043281Log likelihood-207.2041 F-statistic15.55188Durbin-Watson stat0.958467 Prob(F-statistic)0.000219Unweighted StatisticsR-squared0.946335 Mean dependent var119.6667Adjusted R-squared0.945410 S.D. dependent var38.68984S.E. of regression9.039689 Sum squared resid4739.526Durbin-Watson stat0.800564选取权重w2的结果Dependent Variable: YMethod: Least SquaresDate: 01/01/04 Time: 02:49Sample: 1901 1960Included observations: 60Weighting series: W2VariableCoefficientStd. Errort-StatisticProb. C10.123272.7557753.6734750.0005X0.6330290.02459025.743740.0000Weighted StatisticsR-squared0.961581 Mean dependent var94.01206Adjusted R-squared0.960918 S.D. dependent var41.02965S.E. of regression8.111184 Akaike info criterion7.057130Sum squared resid3815.896 Schwarz criterion7.126941Log likelihood-209.7139 F-statistic1451.660Durbin-Watson stat2.091305 Prob(F-statistic)0.000000Unweighted StatisticsR-squared0.946381 Mean dependent var119.6667Adjusted R-squared0.945457 S.D. dependent var38.68984S.E. of regression9.035795 Sum squared resid4735.444Durbin-Watson stat1.795043选取权重w3的结果Dependent Variable: YMethod: Least SquaresDate: 01/01/04 Time: 02:50Sample: 1901 1960Included observations: 60Weighting series: W3VariableCoefficientStd. Errort-StatisticProb. C10.109082.9807893.3914090.0013X0.6326710.01837934.423410.0000Weighted StatisticsR-squared0.801827 Mean dependent var112.9123Adjusted R-squared0.798411 S.D. dependent var18.33568S.E. of regression8.232480 Akaike info criterion7.086817Sum squared resid3930.877 Schwarz criterion7.156628Log likelihood-210.6045 F-statistic234.6742Durbin-Watson stat1.874009 Prob(F-statistic)0.000000Unweighted StatisticsR-squared0.946378 Mean dependent var119.6667Adjusted R-squared0.945454 S.D. dependent var38.68984S.E. of regression9.036056 Sum squared resid4735.718Durbin-Watson stat1.795491选取权重w4的结果Dependent Variable: YMethod: Least SquaresDate: 01/01/04 Time: 02:51Sample: 1901 1960Included observations: 60Weighting series: W4VariableCoefficientStd. Errort-StatisticProb. C-4.8193998.678108-0.5553510.5808X0.7019620.03725618.841780.0000Weighted StatisticsR-squared0.988973 Mean dependent var142.6838Adjusted R-squared0.988783 S.D. dependent var122.1399S.E. of regression12.93572 Akaike info criterion7.990626Sum squared resid9705.300 Schwarz criterion8.060438Log likelihood-237.7188 F-statistic5202.006Durbin-Watson stat1.720951 Prob(F-statistic)0.000000Unweighted StatisticsR-squared0.930773 Mean dependent var119.6667Adjusted R-squared0.929579 S.D. dependent var38.68984S.E. of regression10.26711 Sum squared resid6113.985Durbin-Watson stat1.354364经估计检验w2的效果最好估计结果如下10.12327+0.633029 t= (3.673475) (25.74374) F=1451.6605.3解(1)建立模型 (Y表示农村居民家庭人均消费支出,X表示人均纯收入)通过eviews对数据进行估计 Dependent Variable: YMethod: Least SquaresDate: 01/01/04 Time: 02:19Sample: 1901 1931Included observations: 31VariableCoefficientStd. Errort-StatisticProb. C179.1916221.57750.8087090.4253X0.7195000.04570015.744110.0000R-squared0.895260 Mean dependent var3376.309Adjusted R-squared0.891649 S.D. dependent var1499.612S.E. of regression493.6240 Akaike info criterion15.30377Sum squared resid7066274. Schwarz criterion15.39628Log likelihood-235.2084 F-statistic247.8769Durbin-Watson stat1.461684 Prob(F-statistic)0.000000样本回归模型为Y=179.1916+0.719500X(221.5775) (0.045700) t=(0.808709) (15.74411) (2)对模型进行White检验根据模型White检验结果如下White Heteroskedasticity Test:F-statistic7.194463 Probability0.003011Obs*R-squared10.52295 Probability0.005188Test Equation:Dependent Variable: RESID2Method: Least SquaresDate: 01/01/04 Time: 02:26Sample: 1901 1931Included observations: 31VariableCoefficientStd. Errort-StatisticProb. C69872.27641389.00.1089390.9140X-72.02221248.7240-0.2895670.7743X20.0203370.0206270.9859720.3326R-squared0.339450 Mean dependent var227944.3Adjusted R-squared0.292268 S.D. dependent var592250.3S.E. of regression498241.3 Akaike info criterion29.16732Sum squared resid6.95E+12 Schwarz criterion29.30610Log likelihood-449.0935 F-statistic7.194463Durbin-Watson stat2.390409 Prob(F-statistic)0.003011由表知,由White检验知,在,所以拒绝原假设,表明模型存在异方差。理由:这样的两个变量属于截面数据,运用截面数据,研究消费和收入之间的关系时,如果采取不同家庭收入组的数据,低收入组的家庭用于购买生活必需品的比例相对较大,消费的分散成都不大,组内个家庭消费的差异也较小。高收入组的家庭有更多自由支配的收入,家庭消费有更广泛的选择范围,消费的分散程度较大,组内各家庭消费的差异也较大。这种家庭的消费偏离均值程度的差异,最终反映为随机误差项偏离其均值的程度有变化,而出现异方差。(3) 修正异方差选用权数,运用加权最小二乘法(WLS)进行估计结果如下选取权数w1的结果Dependent Variable: YMethod: Least SquaresDate: 01/01/04 Time: 02:30Sample: 1901 1931Included observations: 31Weighting series: W1VariableCoefficientStd. Errort-StatisticProb. C578.2963174.57163.3126600.0025X0.6233050.04768213.072260.0000Weighted StatisticsR-squared0.274523 Mean dependent var2983.378Adjusted R-squared0.249507 S.D. dependent var373.3588S.E. of regression323.4445 Akaike info criterion14.45827Sum squared resid3033875. Schwarz criterion14.55079Log likelihood-222.1032 F-statistic10.97372Durbin-Watson stat1.836477 Prob(F-statistic)0.002484Unweighted StatisticsR-squared0.878889 Mean dependent var3376.309Adjusted R-squared0.874712 S.D. dependent var1499.612S.E. of regression530.8026 Sum squared resid8170791.Durbin-Watson stat1.746914选取权重w2的结果Dependent Variable: YMethod: Least SquaresDate: 01/01/04 Time: 02:31Sample: 1901 1931Included observations: 31Weighting series: W2VariableCoefficientStd. Errort-StatisticProb. C787.2847173.69644.5325340.0001X0.5614720.05573110.074680.0000Weighted StatisticsR-squared0.946060 Mean dependent var2743.600Adjusted R-squared0.944200 S.D. dependent var1165.059S.E. of regression275.2095 Akaike info criterion14.13528Sum squared resid2196468. Schwarz criterion14.22780Log likelihood-217.0969 F-statistic508.6387Durbin-Watson stat2.482750 Prob(F-statistic)0.000000Unweighted StatisticsR-squared0.848003 Mean dependent var3376.309Adjusted

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论