




已阅读5页,还剩20页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
.,18.1勾股定理说课稿,沪科版八年级(下),.,.,一、教材分析,教材的地位和作用教学目标,.,(一)教材的地位和作用,“探索勾股定理”是义务教育课程标准实验教科书八年级(下册)第十八章第一节内容勾股定理的第1课时。“勾股定理”是安排在学生学习了三角形、全等三角形、等腰三角形等有关知识之后,它揭示了直角三角形三边之间的一种美妙关系,将形与数密切联系起来,在几何学中占有非常重要的位置。同时,勾股定理在生产、生活中也有很大的用途。,.,(二)教学目标,.,二、教学重点、难点,重点:勾股定理的内容及其应用难点:勾股定理的证明突破难点关键:运用“拼图法”和“面积法”,.,三、教法与学法分析:,教法:以引导探索法为主,实验法、讨论法为辅,由浅到深,由特殊到一般。充分利用教具及多媒体等教学手段。学法:引导学生动手操作,自主探索,合作交流。,.,四、教学过程,一、创设情境引入新课,二、动手操作探索新知,三、证明猜想得到定理,四、应用知识,回归生活,五、总结反思,布置作业,.,(一)、创设情境,引入新课(2),一棵树在离地面4米处断裂,树的顶部落在离树跟底部3米处,求这棵树折断前有多高?,.,抽象出数学问题:,已知一直角三角形的两边,如何求第三边?”的问题在中,角C是直角,已知AC=4m,BC=3m,求AB?,.,相传2500年前,古希腊著名数学家毕达哥拉斯从朋友家的地砖铺成的地面上发现了直角三角形的某种特性,从而找到了答案。同学们,我们也来观察下面的地面,看看你能发现什么?是否也和大数学家有同样的发现呢?,【】,请大家从面积的角度来观察图形:,【活动1】(二)、动手操作,探索新知,.,思考:你能发现各图中三个正方形面积之间有何关系吗?,发现:以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积,.,【活动2】一般直角三角形三边关系的发现,引导学生在格子图上画一个直角边分别为3和4的直角三角形,并以其各边为边长作正方形A、B、C。同时给出图二,让学生小组合作计算图一和图二中正方形A、B、C的面积。,图一,图二,A,B,A,B,C,C,正方形面积间的关系:SA+SB=SC,猜想:直角三角形三边之间的关系,即:两直角边的平方和等于斜边的平方。,.,猜想:命题1:,如果直角三角形的两直角边长分别为a、b,斜边长为c,那么,.,拼一拼以小组为单位用四个全等的直角三角形不加覆盖能拼成一个大正方形吗?,a,b,c,a,b,c,a,b,c,a,b,c,(三)证明猜想,得到定理,.,利用计算面积法:,S大正方形=S小正方形+4SRt,a,b,c,a,a,a,b,b,b,c,c,c,.,a,c,b,如果直角三角形的两直角边长分别为a和b,斜边长为c,那么a2+b2=c2.,勾股定理:,【注】1、勾股定理的使用条件?2、勾股定理可以用来解决什么问题?,.,我国古代两种证法,1.“赵爽弦图”,2.刘徽的“青朱出入图”,分享:,.,两千多年前,古希腊有个哥拉,斯学派,他们首先发现了勾股定理,因此,在国外人们通常称勾股定理为毕达哥拉斯,年希腊曾经发行了一枚纪念票。,定理。为了纪念毕达哥拉斯学派,1955,勾股世界,国家之一。早在三千多年前,,国家之一。早在三千多年前,,国家之一。早在三千多年前,,国家之一。早在三千多年前,,国家之一。早在三千多年前,,国家之一。早在三千多年前,,国家之一。早在三千多年前,,国家之一。早在三千多年前,两千多年前,古希腊有个毕达哥拉斯学派,他们首先发现了勾股定理,因此在国外人们通常称勾股定理称为毕达哥拉斯定理。为了纪念毕达哥拉斯学派,1955年希腊曾经发行了一枚纪念邮票。,我国是最早了解勾股定理的国家之一。早在三千多年前,周朝数学家商高就提出,将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”,它被记载于我国古代著名的数学著作周髀算经中。,分享:,.,东西方思维方式及文化差异性,赵爽弦图(中国),毕达哥拉斯树(古希腊),.,(四)运用知识,回归生活。,1、求出下列直角三角形中未知边的长度。,2、直角三角形中两条直角边之比为3:4,且斜边为10cm,求(1)两直角边的长(2)斜边上的高线长,.,(四)运用知识,解决问题,3、解决导入时候提出的问题。前后呼应,学生从中体会到数学来源于生活同时又回归生活,为生活服务。树的高度=AC+AB。,.,(五)归纳小结,布置作业,【总结】1、直角三角形三边有何数量关系?2、勾股定理主要用于解决什么问题?【反思】本节课的学习你参与了讨论了吗?新知识的学习你检测的结果如何?【作业】课本P592、3、7思考题:在平静的湖面上,有一支红莲,高出水面1尺红莲被风一吹,花朵刚好与水面平齐,已知红莲移动的水平距离是2尺问这里水深是多少?,.,探索勾股定理,板书设计,勾股定理内容,勾股定理的证明,例题讲解,习题训练,猜想:,.,五、设计说明:,根据学生的知识结构,采用的教学流程是:创设情境导入新课动手操作探究新知证明结论得到定理应用知识回归生活总结反思布置作业五部分,这一流程体现了知识发生、形成和发展的过程,让学生观察、猜想、归纳、验证的思想和数形结合的思想从学生熟悉的生活经历的题目,选择学生身边的、感兴趣的事物着手,体现了数学源于生活同时又回归于生活服务于生
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 地基基础工程施工设备维护方案
- 城区地下老旧供热管线检测评估方案
- 9.17 高山流水志家国-古琴 教学设计-2023-2024学年高中音乐人音版(2019)必修音乐鉴赏
- 2025年安全生产第三季度工作总结范例(二篇)
- 医院旧楼改造粉尘污染控制方案
- 加油站储油设施防渗漏技术方案
- 2025年急诊科创伤抢救处理模拟考试卷答案及解析
- 产业园供水管道泄漏检测技术方案
- 海相沉积土地基处理技术方案
- 2025重庆市柑橘原料采购协议合同(参考文本)
- 以工代赈务工协议书
- 重大版小学信息技术说课
- 2025年三级仓储管理员(图书管理)职业技能鉴定《理论知识》考试真题(后附答案及解析)
- 2025至2030中国电动和手动工具行业市场深度研究与战略咨询分析报告
- 0-6岁儿童心理行为发育问题预警征象筛查表条目及释义
- 安全生产管理人员考核试题(答案)
- (高清版)DB31∕T 1596-2025 《电子材料共享应用技术规范》
- 初升高家长会课件
- 2025年福建中考历史试题答案讲解及备考指导课件
- 弹药入库堆垛方案模板
- 资源人脉入股协议书模板
评论
0/150
提交评论