




免费预览已结束,剩余47页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
,空间几何体的表面积与体积,1.柱、锥、台和球的侧面积和体积,忆一忆知识要点,例1.钢球直径是5cm,求它的体积.,定理:半径是R的球的体积,引例.如图,正方体ABCD-A1B1C1D1的棱长为a,它的各个顶点都在球O的球面上,问球O的表面积。,分析:正方体内接于球,则由球和正方体都是中心对称图形可知,它们中心重合,则正方体对角线与球的直径相等。,略解:,变题1.如果球O和这个正方体的六个面都相切,则有S=。变题2.如果球O和这个正方体的各条棱都相切,则有S=。,关键:,找正方体的棱长a与球半径R之间的关系,第一步:分割,O,球面被分割成n个网格,表面积分别为:,则球的表面积:,则球的体积为:,设“小锥体”的体积为:,2、球的表面积,O,第二步:求近似和,O,由第一步得:,第三步:转化为球的表面积,如果网格分的越细,则:,由得:,球面:半圆以它的直径为旋转轴,旋转所成的曲面。,球(即球体):球面所围成的几何体。,它包括球面和球面所包围的空间。,半径是R的球的体积:,推导方法:,分割,求近似和,化为准确和,小结:,O.,1、球的体积,已知球的半径为R,问题:已知球的半径为R,用R表示球的体积.,几何体的表面积,【例1】一个几何体的三视图如图,该几何体的表面积是()A.372B.360C.292D.280,由三视图可知该几何体是由下面一个长方体,上面一个长方体组合而成的几何体,几何体的表面积,【例1】一个几何体的三视图如图,该几何体的表面积是()A372B360C292D280,下面长方体的表面积为,上面长方体的表面积为,又长方体表面积重叠一部分,,B,81022821022232.,862282262152,,几何体的表面积为232152262360.,一个几何体的三视图(单位:cm)如图所示,则该几何体的表面积是_cm2.,由三视图知该几何体为一个四棱柱、一个半圆柱和一个半球的组合体,,其中四棱柱上表面与半球重合部分之外的面积为,四棱柱中不重合的表面积为,半圆柱中不重合的表面积为,一个几何体的三视图(单位:cm)如图所示,则该几何体的表面积是_cm2.,A,自主练习,几何体是底面是等腰梯形的直棱柱.,C,几何体的体积,方法三:,在求解一些不规则的几何体的体积以及两个几何体的体积之比时,常常需要用到分割法在求一个几何体被分成两部分的体积之比时,若有一部分为不规则几何体,则可用整个几何体的体积减去规则几何体的体积求出其体积,D,2.(09山东)一空间几何体的三视图如图所示,则该几何体的体积为(),解析:该空间几何体为一圆柱和一四棱锥组成,圆柱的底面半径为1,高为2,体积为,四棱锥的底面边长为,高为,,C,A,A,正视图侧视图,正视图,俯视图,侧视图,5.,6.(07宁夏、海南)已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是_.,20,正视图,20,侧视图,10,20,俯视图,20,20,10,A,B,C,D,E,S,A,B,C,D,P,B,组合体的表面积与体积问题,【例3】正三棱锥的高为1,底面边长为,内有一个球与它的四个面都相切(如图)求:(1)这个正三棱锥的表面积;(2)这个正三棱锥内切球的表面积与体积,有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个半径为r的铁球,并注入水,使水面与球正好相切,然后将球取出,求这时容器中水的深度,从而容器内水的体积为,解:,例4.,当圆,几何体的截面问题,例4.如图所示,几何体为一个球挖去一个内接正方体得到的组合体,现用一个平面截它,所得截面图形不可能是(),D,以正方体上底面中心O2与下底面中心O1连线为轴作出截面,截面绕O1O2轴旋转过程中分别出现截面A,B,C,本题需要更强的空间想象力,【1】棱长为2的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面如图,则图中三角形(正四面体的截面)的面积是(),方法一:棱长为2的正四面体的一个侧面面积为,显然图中三角形(正四面体的截面)的面积介于两者之间,从而选C.,几何体的截面问题,C,方法二:过该球球心的一个截面如图为ABF,则AB=2,E为AB中点,且EFDC.,在DCE中,,【1】棱长为2的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面如图,则图中三角形(正四面体的截面)的面积是(),C,几何体的截面问题,探究提高估算省去了很多推导过程和比较复杂的计算,节省了时间.其应用广泛,它是人们发现问题、研究问题、解决问题的一种重要的运算方法.从考试的角度来看,解选择题、填空题只要选对做对就行.但平时做题时要尽量弄清每一个选择支正确的与错误的原因.另外,在解答一道选择题、填空题时,往往需要同时采用几种方法进行分析、推理,只有这样,才会在高考时充分利用题目自身提供的信息,做到准确快速地解题.,D,几何体的截面问题,由于空间想象能力不强,对几何体的形成过程不熟
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025福建泉州晋江智信大数据科技有限公司招聘8人笔试备考试题及答案解析
- 2025广西钦州市12345政府服务热线管理中心招聘话务见习人员10人笔试备考试题及答案解析
- 2025青海西宁国科科技创新有限公司社会招聘3人考试模拟试题及答案解析
- 2025版速记服务与技术成果保密协议
- 2025版全球知名商标品牌转让协议
- 2025版网络安全融资合作保密协议
- 2025年度生物降解材料保密及竞业禁止服务协议
- (2025年标准)建设保修协议书
- 2025广东佛山市南海高新区第一小学招聘教师考试备考试题及答案解析
- (2025年标准)简单技术协议书
- 食品安全体系规范(HACCP)样本
- 2024年高考数学精准备考策略
- FZT 73013-2017 针织泳装行业标准
- 银行安全生产案例
- chemSHERPA CI:AI的制作方法说明资料
- 软件开发功能验收表
- 电力各种材料重量表总
- 完整版公司开户章程模板
- 《自动控制原理》说课
- 浆膜腔积液细胞病理学国际报告系统
- 氧化铝产品质量控制与质量管理研究
评论
0/150
提交评论