




已阅读5页,还剩40页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Membrane-basedtechniquesfortheseparationandpurificationofProteins,Membrane-basedtechniquesfortheseparationandpurificationofproteins,Introduction,Pressure-drivenmembranetechnologies,Membranechromatography,Electrophoreticmembranecontactor,Integratedmembranetechnologies,CONTENTS,Conclusions,1.Introduction,Definition,Advantage,Application,Amembranecanbedescribedasaninterphase,usuallyheterogeneous,actingasabarriertotheowofmolecularandionicspeciespresentintheliquidsand/orvaporscontactingthetwosurfaces.,Advantage:(1)selectivetransport,(2)efcientseparation,(3)notrequireadditives,(4)lessenergyconsumption.,Application:(1)demineralization,(2)desalination/puricationofwater,(3)bioseparationoffermentationproducts(4)milkfractionation,(5)decaidicationoffruitjuices.,Type:(1)microltration(MF),(2)clarication,sterileltrationandultraltration(UF),(3)Nanoltration(NF),(4)High-performancetangentialowltration(HPTFF).,Type,Definition,Disadvantage:(a)limitationoftheprocessstreamforrelativelylowconductivityoffeedstream,(b)ahigh-energyrequirement,(c)substantialheatproduction,and(d)changesintheprocessfeedduetoreactionattheelectrodePESiswidelyusedUFmembranematerial,becauseofitshighrigidity,creepresistance,goodthermalanddimensionalstabilities.OthertypesofpolymericUFmembranessuchaspolyacrylonitrilemembrane,regeneratedcellulosemembrane,celluloseacetatemembraneandceramicmembranes.,2.1.Proteinsseparation/puricationbyMF,2.2.roteinseparationbyUF,2.3.AdvancedUFtechniquesforproteinsseparations,2.4.Proteinseparation/puricationbyNF,2.5.MembranefoulingduringproteinseparationbyUFandMF,2.1.Proteinsseparation/puricationbyMF,ModulecongurationofMFincludehollow-ber,tubular,atplate,spiral-woundandrotatingdevices.Thetwostandardmodesofoperationaredead-endandcross-owcongurationsareshowninFig.2.Thesedevicesshowsignicantincreasesinproteintransmissionandcapacity.,MFiswidelyusedfortheseparation,puricationandclarifyingofprotein-containingsolutions,e.g.fortherecoveryofextracellularproteinsproducedviafermentationandfortheremovalofbacteriaandvirusesinthenalformulationoftherapeuticproteins.,2.1.1.AdvancedMFunderelectriceld,Mucheffortisstillbeingdevotedtodevelopingnewmembranemoduleswithimprovedmass-transfercharacteristicsforUFandMFprocesses.Electricallyenhancedmembraneltration(EMF)isanadvancedtechnique,whichconsistsinsuperimposinganelectricaleldtoaconventionalembraneltrationunit.InEMF,theelectricaleldactsasanadditionaldrivingforcetothetransmembranepressure.,Advangtage:(1)selectivityenhancement,(2)improveproteinsolutionspermeationux,(3)reducethesurfacelayerofamembrane,2.2.ProteinseparationbyUF,UFmembranes,basedonvarietyofsyntheticpolymers,havehighthermalstability,chemicalresistivity,andrestrictedtheuseoffairlyharshcleaningchemicals.,Modules:(1)Hollowber,(2)at-sheetcassettes,(3)spiral-woundcartridges,(4)tubularmodules,(5)enhancedmasstransferdevices,Proteinfractionationisrapidlybecomingmoreselectivethroughimprovementsinmembraneandmoduledesign.,2.3.1.ProteinseparationusingchargedUFmembranes,ChargedUFmembraneseparationprocessinvolvedbothsizeandchargebasedexclusionratherthansimplysize-basedseparationofproteinmolecules,asinthecaseofUF.,Factor:(1)pHvalues,(2)ionicstrengths,(3)permeateux,(4)andsystemhydrodynamics.Advantange:extremelylowfoulingduetoelectrostaticrepulsion.,Material:(1)polyethersulfone,(2)polysulfone,(2)celluloseacetate,(3)regeneratedcellulose,(4)poly(ethyleneglycol)(PEG),(5)poly(furfuralalcohol)(PFA).,2.3.2.UFinthepresenceofelectriceld(electro-ultraltration),TheuseofelectriceldinUFgoesbacktotherststudycarriedoutbyBechholdbyimposingelectriceldinUFandutilizedacombinationofelectroosmosisandelectrophoresistopurifycolloidsinanapparatushecalledanelectro-ultraltration(EUF).,EUFisaneffectivemethodtodecreasegellayerformationonthemembranesurfaceandtoincreasetheltrationux,owingtoelectrokineticphenomenasuchaselectrophoresisandelectroosmosis,Factor:(1)electriceld,(2)solventow,Advantage:(1)enhancetheltrationrate,(2)increasestheseparationefciencyoftheUFofproteins.,Forthisreason,attentionhasbeendirectedtotheuseofpulsedelectricelds.Advantage:(1)lessenergy,(2)higherux,(3)reducingfouling,(4)restoringhighpermeationrate.,Disadvantage:(1)limitationoftheprocessstreamforrelativelylowconductivityoffeedstream,(2)ahigh-energyrequirement,(3)substantialheatproduction,and(4)changesintheprocessfeedduetoreactionattheelectrode.,Theapplicationoftheelectricpulseinthecleaningmembranesurfacewasaneffectivemeansinreducingfoulingandrestoringhighpermeationrate.,2.3.3UFinthepresenceofultrasonicfield,concentrationpolarizationandmembranefoulingleadtothedeclinationofpermeatesflux.,concentrationpolarizationreason:aconcentrationgradientoftheretainedcomponentsisformedonornearthemembranesurface.,Ultrasoundgeneratesacousticstreamingandcavitationbubblesinaliquidmedium,Cavitationbubblecausesmicrostreaming,microstreamers,microjets,andshockwaves.,membranefoulingreason:accumulationofproteinsdrawntowardfilteringsurfacebyconvectiveflowoffiltratethroughthemembrane.,VariousmethodshavebeenusedtoreducethenegativeeffectsofconcentrationpolarizationandfoulingforenhancethepermeatefluxandmembraneseparationefficiencysuchasUltrasonicphysicaleffectsandsonochemicaleffects.,Releasefromaparticle-fouledsurfacemechanism,Higherfrequencyultrasoundtendstohavehigherenergyabsorptionandthusgreateracousticstreamingflowratesthanlowerfrequenciesforthesamepowerintensity,higherpowerintensitiesleadtogreateracousticstreamingflowrates.,Thismechanismcausesbulkwatermovementtowardandawayfromthemembranecakelayer,withvelocitygradientsnearthecakelayerthatmayscourparticlesfromthesurface.,TheeffectofultrasonicwaveonseparationperformanceofproteinmixturebyUF,Theeffectofultrasoundonthefluxandsoluterejectionincross-flowUFofBSA-lysozymebinaryproteinmixtureusingPESmembraneultrasonicwavenotonlyenhancedtheUFfluxbutalsoincreasedthelysozymerejection.,ultrasoundwave(25kHzand240W)resultedinanincreaseofUFfluxby135%and120%withPESmembraneatpH:11intheupwardanddownwardmodes,respectively,incontrasttothecaseofwithoutanyultrasound.,MuralidharaandTarleton:electricandultrasonicfieldscanreducemembranefoulingandinturnofenhancedflux.additionWakemanandWilliams:Bothelectricalandultrasonicfieldsreducedthefoulingwhenappliedindividually,buttheextentofimprovementbytheultrasonicfieldcouldbeminimal.,Notice:theeffectivenessdependsonmanyfactors,suchasorientationandpositionofultrasonicfield,ultrasonicfrequencyandpower,ultrasonicradiationangle,positionofultrasonicvibrationplateinthemembranemodule,membranematerial,membranhousing,operatingpressureandthefoulingmaterial.Reusit:ultrasoniccavitation,acousticstreaming,ultrasonicinducedvibrationofmembraneandultrasonicheatingwasthemaincauses.,2.3.4.High-performancetangentialflowfiltration,HPTFF:anemergingtechnology、similarsize(Conventionalten-foldinsize,nowlessthanthreefoldinsize).,Optimumselectivityandthroughput,enhancedthroughmoduledesignandprocessconfigurations.,Sievingbehaviorimpact:OptimizationsofbufferpHandionicstrength.,Atwodimensionalunitoperation,proteinconcentration,purificationandbufferexchangecanbeaccomplishedinasingleunitoperation.,Somestrategiestoachievehighresolutionseparations,(1)properchoiceofpHandionicstrengthtomaximizedifferencesinthehydrodynamicvolumeoftheproductandimpurity.,(2)useofelectricallychargedmembranestoenhancetheretentionoflikechargedproteins.,(3)operationinthepressure-dependentregimetomaximizetheselectivity.,(4)useofadia-filtrationmodetowashimpuritiesthroughthemembrane.,ComparisonofflowandpressureprofilesforconventionalTFFmoduleandco-flowarrangement,2.4.Proteinseparation/purificationbyNF,NF:suitablecut-offoftheNFmembranesandtheelectrochemicaleffects.,1、Negativelychargedmembraneshavebeenappliedtoenrichcationicpeptideswithantibacterialpropertiesfromcheesewhey.,2、Pouliot:theseparationofpeptidesfromtryptichydrolysatesofwheyproteinswithchargedUF/NFmembranes.,3、VariationinpHandtheionicstrength.,2.5.MembranefoulingduringproteinseparationbyUFandMF,Membranefouling:adsorptiononmembranesurfacesignificantlyincreaseshydraulicresistancetoflow,reducedfiltrationfluxrateandinducedunfavorableeffectonefficiencyandeconomicsofproteinrecoveryprocesses.,Foulingforms:(i)Theformationofagellayerduetoconcentrationpolarization.,(ii)Adsorptionofspeciesonthemembranesurfaceandinsidetheporestructure.,(iii)Depositionandporeblockingaftertheformationofproteinaggregatesduetodenaturation.,HoandZydney:developedacombinedmembranefoulingmodelporeblockageandcakefiltrationtodescribefluxdecline.,Themodelshowsasmoothtransitionfromporeblockagetocakefiltration,andisingoodagreementwithfluxdeclinedataobtainedduringbovineserumalbuminfiltrationusingpolycarbonatetracketchedmembranes.,Butinternalfoulingwascompletelyneglected.,welcometousethesepowerpointtemplates,NewContentdesign,10yearsexperience,A,B,Microsieves,theadvantageisthelargerpermeateflux,whichallowslow-pressureoperationandsavingsintheoperationalcostsandanotheradvantageofmicrosievesoverMFmembranesistheirstructuraldesign,averythinselectivelayerandperfectlyshapedstraightpores.,Surfacemodification,suchascoating,surfacegraftpolymerization,andchemicalmodification.,Nakao:studiedthatproteinfoulingduringUFwasentirelyduetotheformationofasecondary(gel)layerontheuppersurfaceofthemembrane.,Jiang.synthesizedpegylatedPESviaareactionofsulfonatedPESwitholigomericpoly(ethyleneglycol)(PEG).ThemodifiedmembranesshowedsuperiorresistancetoBSAadsorptionincomparewithunmodifiedcounterparts.,3.Membranechromatography,TITLE,ligandmoleculesareimmobilizedontheporoussurfaceoftheembeddedparticlesandthemixturecontainingtheproteinofinterestispassedthroughtheaffinitymembrane.,welcometousethesepowerpointtemplates,NewContentdesign,10yearsexperience,A,B,Threetypesofmembraneadsorbers:flatsheet,hollowfiberandradialflow,Flat-sheetmembraneadsorbers,theliquidwasusuallyintroducedtothemembranesurface.Stacksofseveralflatsheetswerehousedwithinmembranemodules.,Ahollow-fibermembraneadsorberusuallyconsistsofabundleofseveralhundredfiberspottedtogetherwithinamoduleinashellandtubeheat-exchanger-typeconfiguration.,Radialflowadsorberswereclaimedtobesuitableforlarge-scaleapplications.,welcometousethesepowerpointtemplates,NewContentdesign,10yearsexperience,A,B,3.1.Microporousmaterialsformembranechromatography,3.2.Affinityion-exchangematerialsformembranechromatography,3.3.Applicationofmembranechromatographyforproteinseparation,Theusesofion-exchangeandaffinityinteractionsaremorewidelyreported,butonlysmallworkhasbeendoneonhydrophobicinteractionandreversed-phasebasedmembranechromatographyofproteins.,Theligands(配体)usedforaffinity-membranechromatographycanbebroadlyclassifiedintofourtypes:iimmunoaffinityligands,iiprotein,iiilow-molecular-massligands,ivotherligands.,Lysozyme(溶菌酶)separationfromeggwhitewasachievedefficientlyusingmacroporouschitinmembrane,with98%purity.,Thiophilicmembranes(嗜硫膜)forthepurificationofmonoclonalantibodies,Hollow-fibermembranes(中空纤维膜)fortheseparationofIG,Stronganion-exchangemembranesforreductionofendotoxin,Ion-exchangemembranesfortheisolationofantibacterialpeptidesfromlactoferrin,Cation-exchangemembranesforthepurificationofalphaviruses,AffinitymembranesfortheseparationofMBPfusionproteins,4.Electrophoreticmembranecontactorfortheseparationofproteins,Differentstudiesweredevotedtofindouttheoperatingmodesforscale-upofelectrophoreticseparations.Oneofthemiscontinuousflowelectrophoresis(CFE)(连续流动电泳).,Thelimitationswereintermsofproductioncapacityorproductivity,demonstratedandithadastrongrelationshipbetweenresolutionandproductivity.,Itwasfoundthattheproductivitycouldnotbeincreasedoveracertainlimit,typicallyaboutfewmilligramsperhour.,Toovercometheselimitations,electro-membraneoperationsofferedthepossibilitytoincreasetheproductivitywithoutcompromisingfromseparationefficiency.Themostcommonelectromembraneoperationiselectrodialysis(ED)(电渗析)inwhichion-exchangemembranesareused.,Inthatcase,theporousmembraneactsasacontactorandtheseparationisachievedwithrespecttothedifferencebetweenthemassflowratesofthespecies.,Electrophoreticmembranecontactorwasdevelopedfortheseparationofbinarymixtureofproteinsbyusingion-exchangeandultrafiltermembranes.,5.Integratedmembranetechnologiesforproteinseparation,Membraneprocessforfoodanddairyindustry,Milkanddairyindustry,Theintegrationofmembraneshasbeenimplementedthroughoutthemilkanddairyprocessingchains-milkreception,cheesemaking,wheyproteinconcentration,fractionationofproteinhydrolysates,wastestreampurificationandeffluentsrecyclingandTreatment.,Foodandbeverageindustries,Recentindustrialapplicationshavebeendevelopedforfruit,vegetableandsugarjuicesandbeverages(vegetableproteins,beer,andwine).Furtherintegrationofmembraneoperationsweredesignedinsuchawaythatateachprocessingstep,endproducts,co-productsandwastesaregivenevenattention.,A,B,Membraneprocessforfoodanddairyindustry,Membraneprocess,Removalofbacteriaandsporesfromskimmilk(coldpasteurization),MFreducestheamountofbacteria,sporeswithoutaffectingthetasteofmilk,andprovideslongershelflifethanpasteurization.Besidestheproductionofconsumptionmilkwithextendedshelflife(保质期),thismethodcanbeusedaspretreatmentofskimmilk(脱脂牛奶)fortheproductionofrawmilkcheesesandthereductionofsporesinacidcheesemilk.,Arecentdevelopmentisthemicrosieves,whichwasmadewithmicro-machiningtechnology.Withmicrosieves,ahighreductionofbacteriacanbeachievedatlowtransmembranepressure,sincethesemembraneshaveveryhighpermeabilities.Hence,theuseofmicrosievesseemsverypromising.,Recoveryofserumproteinsan
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 桂花蜜饯铺创新创业项目商业计划书
- 读书笔记演讲稿模版模板
- 夏威夷果果汁制造创新创业项目商业计划书
- 果蔬罐头厂创新创业项目商业计划书
- 酱油酱类制作工特殊工艺考核试卷及答案
- 时尚科技融合加速器创新创业项目商业计划书
- 智能垃圾分类系统孵化器创新创业项目商业计划书
- 丁辛醇装置操作工晋升考核试卷及答案
- 乡镇医院安全知识培训课件
- 2025-2030年新能源汽车电池回收与再生利用产业链投资机会报告
- Unit 2 Home Sweet Home 重点短语和句式-人教版英语八年级上册
- 黄体破裂护理常规课件
- 防治大气污染课件
- 环境监测质量管理课件
- 国际音标教学课件
- 2025-2030中国可变磁阻旋转变压器行业产销状况与应用趋势预测报告
- (高清版)DB31∕T 310001-2020 船舶水污染物内河接收设施配置规范
- 诊所治疗室管理制度
- 2025年高考英语全国二卷听力试题真题及答案(含MP3+原文)
- 常用概率分布题目及答案
- 2025年互联网营销师考试题及答案
评论
0/150
提交评论